Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (1): 85-91.doi: 10.3724/SP.J.1006.2010.00085
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Lei,ZHU Yi-Chao**,CAI Cai-Ping,ZHANG Tian-Zhen,GUO Wang-Zhen*
[1] Fryxell P A. The Natural History of the Cotton Tribe. College Station, TX: Texas A&M University Press, 1979 [2] Basra A S, Malik C P. Development of cotton fiber. Inter Rev Cytol, 1984, 89: 65-113 [3] Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber. Theor Appl Genet, 1997, 94: 909-918 [4] Turley R B, Ferguson D L. Changes of ovule proteins during early fiber developing in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695-702 [5] Dhindsa R S, Beasley R B, Ting I P. Osmoregulation in cotton fiber: Accumulation of potassium and malate during growth. Plant Physiol, 1975, 56: 394-398 [6] Basra A S, Malik C P. Dark metabolism of CO2 during elongation of two cottons differing in fiber lengths. J Exp Bot, 1983, 34: 1-9 [7] John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proc Natl Acad Sci USA, 1992, 89: 5769-5773 [8] Kohel R J. Linkage tests in upland cotton, Gossypium hirsutum L. Crop Sci, 1972, 12: 66-69 [9] Karaca M, Saha S, Jenkins J N, Zipf A, Kohel R, Stelly D M. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (Li1) mutant in cotton. J Hered, 2002, 93: 221-224 [10] Wan C Y, Wilkins T A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem, 1994, 223: 7212 [11] Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971 [12] Winer J, Jung C K, Shackel I, Williams P M. Development and validation of real-time quantitative reverse transcriptase polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem, 1999, 270: 41-49 [13] Han Z G, Guo W Z, Song X L. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Genet Genom, 2004, 272: 308-327 [14] Guo W, Cai C, Wang C, Zhao L, Wang L, Zhang T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom, 2008, 9: 314 [15] Van-Ooijen J W, Voorrips R E. JoinMapR Version 3.0: Software for the Calculation of Genetic Linkage Maps, CPRO-DLO, Wageningen, 2001 [16] Liu R H(刘仁虎), Meng J L(孟金陵). MapDraw: A Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract) [17] Roberts E, Frankel S. Gamma-Aminobutyric acid in brain: Its formation from glutamic acid. J Biol Chem, 1950, 187: 55 [18] Satyanarayan V, Nair P M. Enzymolgy and possible roles of 4-aminobutyrate in higher plants. Phytochem, 1990, 29: 367-375 [19] Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H. A plant glutamate decarboxylase containing a calmodulin binding domain.J Biol Chem, 1993, 268: 19610-19617 [20] Rea P A. Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci, 1992, 17: 348-353 [21] Rea P A, Poole R J. Vacuolar H+-translocating pyrophosphatase. Plant Mol Biol, 1993, 44: 157-180 [22] Zhen R G, Kim E J, Rea P A.The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res, 1997,25: 297-337 [23] Maeshima M. Vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 2000, 1465: 37-51 [24] Smart L B, Vojdani F, Maeshima M, Wilkins T A. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol, 1998, 116: 1539-1549 Roberto A G, Jisheng L, Soledad U, Lien M D, Gethyn J A, Seth L A, Gerald R F. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001, 98: 11444-11449 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|