Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (07): 1075-1083.doi: 10.3724/SP.J.1006.2010.01075
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LU Yue-Shang1,2,LIU Ying-Hui2,3,**, ZHANG Deng-Feng2, SHI Yun-Su2, SONG Yan-Chun2, WANG Tian-Yu2,*, YANG De-Guang1,*, LI Yu2
[1] Jones A M, Vierstra R D, Daniels S M, Quail P. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta, 1985, 164: 501–506 [2] Dong F-C(董发才), Song C-P(宋纯鹏). The ubiquitin and its physiological functions in plants. Plant Physiol Commun (植物生理学通讯), 1999, 35(1): 54–59 (in Chinese) [3] Wang G-H(王高鸿), Huang J-C(黄久常). Selected degradation of proteins. Chin Bull Life Sci (生命科学), 1999, 11(1): 24–26 (in Chinese with English abstract) [4] Monia B P, Ecker D J, Crooke S T. New perspectives on the structure and function of ubiquitin. Nat Biotechnol, 1990, 8: 209–215 [5] Ozkaynak E, Finley D, Solomon M J, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J, 1987, 6: 1429–1439 [6] Baker R T, Board P G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucl Acids Res, 1991, 19: 1035–1040 [7] Callis J, Raasch J A, Vierstra R D. Ubiquitin extension protein of Arabidopsis thealiana. J Biol Chem, 1990, 26: 12486–12493 [8] Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature, 1989, 338: 394–401 [9] Tytgat T, Vanholme B, Meutter J D, Claeys M, Couvreur M, Vanhoutte I, Gheysen G, Criekinge W V, Borgonie G, Coomans A, Gheysen G. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes. Mol Plant-Microbe Interact, 2004, 17: 846–852 [10] Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335 [11] Dreher K, Callis J. Ubiqutin, hormones and biotic stress in plants. Ann Bot(Lond), 2007, 99: 787–822 [12] Kiyosue T, Kazuko Y S, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs. Plant Mol Biol, 1994, 25: 791–798 [13] Li H Y, Wang T Y, Shi Y S, Fu J J, Song Y C, Wang G Y, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Sequence, 2007, 18: 445–460 [14] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCTmethod. Methods, 2001, 25: 402–408 [15] Xu H-T(涂洪涛), An S-H(安世恒), Guo X-R(郭线茹), Luo M-H(罗梅浩), Wu S-Y(吴少英), Yuan G-H(原国辉). Cloning of ubiquitin extension protein gene from Helicoverpa assulta and its expression in Escherichia coli. J Agric Biotechnol (农业生物技术学报), 2006, 14(6): 884–888 (in Chinese with English abstract) [16] Chen W(陈文), Zheng P-P(郑萍萍), Nie L-W(聂刘旺). Construction of testis cDNA library and sequence analysis of ubiquitin/L40e extension gene in Bufobufo gargarizans. Chin J Zoology (动物学杂志), 2007, 42(1): 20–28 (in Chinese with English abstract) [17] Berg J M. Potential metal-binding domains in nucleic acid binding proteins. Science, 1986, 232: 485–487 [18] Wei S-S(韦双双), Zhang Y-X(张英霞), Li W-H(李文辉), Zhang Y(张云). Molecular cloning and comparison of ubiquitin fusion protein and ribosomal protein L30 from Ophiophagus Hannah. Zoological Research (动物学研究), 2005, 26 (4): 397–403 (in Chinese with English abstract) [19] Gausiong K, Barkardottir R. Structure and expression of ubiquitin genes in higher plants. Eur J Biochem, 1986, 258: 57–62 Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 2006, 141: 391–396 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[5] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[6] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[7] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[8] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[9] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[10] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[11] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[12] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[13] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[14] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[15] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
|