Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (10): 1786-1790.doi: 10.3724/SP.J.1006.2010.01786

• RESEARCH ACTIVITIES • Previous Articles     Next Articles

Genetic Analyses of Silk Vigor in Maize

WU Xin1, 2,CUI Zi-Tian1,HU Yan-Min1,LIU Zong-Hua1,LI Shao-Wei2,WANG Jian-Wen2,TANG Ji-Hua1,*   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; 2 Institute of Food Crops, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng 475004, China
  • Received:2010-01-02 Revised:2010-05-23 Online:2010-10-12 Published:2010-08-04

Abstract: Silk vigor is an important trait that effects hybrid seed production and hybrid production in maize. For dissecting the genetic basis of silk vigor, a set of 203 recombinant inbred lines (RIL) population, which derived from the elite hybrid Nongda 108 (Huang C × Xu 178), were evaluated at three environments. The results showed that silk vigor of genotype had significant distinct at different environments. Eight different QTL were detected for silk vigor using composite interval mapping method, and located on chromosomes 3, 5, 6, 7, and 8, with 11.06%–20.82% phenotypic contribution of silk vigor, this study can aid to seed vigor selection in maize breeding.

Key words: Maize, silk vigor, QTL, analysis

[1]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278
[2]Li J-C(李金才), Cui Y-H(崔彦宏), Dong H-R(董海荣), Wang Y-Z(王艳哲), Zhang L-H(张丽华). The advances on the growth and development and the fertilization capability of maize (Zea mays L.) silk. J Hebei Agric Univ (河北农业大学学报), 2002, 25(1): 86-89
[3]Zhang W-Q(张维强), Shen X-Y(沈秀瑛), Dai J-Y(戴俊英). The effects of drought to pollen, silk vigor and kernel formation. J Maize Sci (玉米科学), 1993, 1(2): 45-48 (in Chinese)
[4]Peterson D P. Duration of receptiveness in corn silks. Agron J, 1949, 34: 369-371
[5]Cárcova J, Otegui M E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci, 2001, 41: 1809-1815
[6]Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Res, 1982, 5: 349-363
[7]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87-94
[8]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448-455
[9]Schoper J B, Lambert R J, Vasilas B L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci, 1987, 27: 27-31
[10]Schoper J B, Lambert R J, Vasilas B L. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Sci, 1986, 26: 1029-1033
[11]Anderson S R, Lauer M J, Schoper J B, Shibles R M. Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci, 2004, 44: 464-473
[12]Bassetti P, Westgate M E. Emergence, elongation, and senescence of maize silks. Crop Sci, 1993, 33: 271-275
[13]Bassetti P, Westgate M E. Senescence and receptivity of maize silks. Crop Sci, 1993, 33: 275-278
[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Etoh T. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[15]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004
[16]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[17]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 12: 185-199
[18]Cárcova J, Uribelarrea M, Borrás L, Otegui M E, Westgate M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Sci, 2000, 40: 1056-1061
[19]Uribelarrea M, Cárcova J, Otegui M E, Westgate M E. Pollen production, pollination dynamics, and kernel set in maize. Crop Sci, 2002, 42: 1910-1918
[20]Struik P C, Doorgeest M, Boonman J G. Environmental effects on flowering characteristics and kernel set of maize (Zea may L.). Neth J Agric Sci, 1986, 34: 469-484
[21]Cárcova J, Andrieu B, Otegui M E. Silk elongation in maize: relationship with flower development and pollination. Crop Sci, 2003, 43: 914-920
[22]Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542-1549
[23]Khairallah M, Bohn M, Jiang C Z, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Z Pflanzenzuecht, 1998, 117: 309-318
[24]Hu Y-M(胡彦民), Wu X(吴欣), Li C-X(李翠香), Fu Z-Y(付志远), Liu Z-H(刘宗华), Tang J-H(汤继华). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J Nanjing Agric Univ (南京农业大学学报), 2008, 31(1): 11-16 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[4] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[8] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[9] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[10] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[11] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[12] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[13] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!