Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (01): 112-118.doi: 10.3724/SP.J.1006.2011.00112
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
ZHOU Bao-Yuan,DING Zai-Song,ZHAO Ming*
[1]Häusler R E, Hirsch H J, Kreuzaler F, Peterhänsel C. Over-expression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot, 2002, 53: 591-607 [2]Lee good R. C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot, 2002, 53: 581-591 [3]Matsuoka M, Furbank R T, Fukayama H, Miyao M. Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 297-314 [4]Mann C C. Crop scientists seek a new revolution. Science, 1999, 283: 310-314 [5]Mann C C. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283: 314-316 [6]Ku M S B, Agarie S, Nomurn M, Fukayama H, Tsuchida H, Ono K,Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech, 1999, 17: 76-80 [7]Sheehy J E, Mitchell P L, Hardy B. Redesign rice Photosynthesis to Increase Yield. Amsterdam: Elsvier Science Publishers, 2000. pp 167-204 [8]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Over expression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257-265 [9]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227-239 [10]Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云). Effect of over expression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin (作物学报), 2007, 33(5): 717-722 (in Chinese with English abstract) [11]Miyao M. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot, 2003, 54: 179-189 [12]Ku M S B, Cho D, Ranade U, Hsu T P, Li X, Jiao D M, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants over expressing maize C4 photosynthesis enzymes. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning of Rice Photosynthesis to Increase Yield. Amsterdam: Elsevier Science Publishers, 2000. pp 193-204 [13]Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku M S B, Cho D H. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res, 2002, 72: 85-93 [14]Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photo inhibition. Photosynthetica, 2005, 43: 501-508 [15]Jiao D-M(焦德茂), Li X(李霞), Huang X-Q(黄雪清), Chi W(迟伟), Kuang T-Y(匡廷云), Ku M S B(古森本). Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice plants with PEPC gene. Chin Sci Bull (科学通报), 2001, 46(5): 414-418 (in Chinese with English abstract) [16]Bandyopadhyay, Datta K, Zhang J, Yang W, Raychaudhuri S, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209 [17]Gonzalez M C, Sanchez R, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216: 985-992 [18]Sanchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909 [19]Echevarría C, Garciá-Maurino S, Alvarez R, Soler A, Vidal J. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum leaves. Planta, 2001, 214: 283-287 [20]Garciá-Maurino S, Monreal J A, Alvarez R, Vidal J, Echevarría C. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence of osmotic stress, involvement of iontoxicity and significance of dark phosphorylation. Planta, 2003, 216: 648-655 [21]Barlow E W K. The Growth and Functioning of Leaves. London: Cambridge University Press, 1988. pp 314-345 [22]Legg B J, Day W, Lawtor D W, Parkinson K J. The effect of drought on barley growth: Models and measurements showing relative importance of leaf area and photosynthetic rate. J Agric Sci, 1979, 92: 703-7161 [23]Yamance K, Hayakawa K, Kawasaki M. Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol, 2003, 160: 1319-1327 [24]Jiang M-Y(蒋明义), Yang W-Y(杨文英), Xu J(徐江), Chen Q-Y(陈巧云). Osmotic stress-induced oxidative injury of riceseedlings. Acta Agron Sin (作物学报), 1994, 20(6): 733-738 (in Chinese with English abstract) [25]Dhindsa R S. Protein synthesis during rehydration of rapidly dried Tortula ruralis: evidence for oxidation injury. Plant Physiol, 1987, 85: 1094-1098 [26]Kavi Kishore P B, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88: 424-438 [27]Liang J-S(梁建生), Zhang J-H(张建华). Production, transport and physiological functions of stress signal abscisic acid in roots. Plant Physiol Commun (植物生理学通讯), 1998, 34(5): 329-338 (in Chinese with English abstract) [28]Grabov A, Blatt M R. Co-ordination of signaling elements in guard cell ion channel control. J Exp Bot, 1998, 49: 351-360 [29]Fang L-F(方立锋), Ding Z-S(丁在松), Zhao M(赵明). Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin (作物学报), 2008, 34(7): 1220-1226 (in Chinese with English abstract) [30]Kung S D, Chollet R, Marsho T V. Crystallization and assay procedures of tobacco ribulose 1,5-bisphosphate carboxylase oxygenase. In: Pietro A S ed. Method Enzymology. New York: Academic Press Inc, 1980, 69: 326-335 [31]Gonzalez D H, Iglesias A A, Andreo C S. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate: effect of pH. J Plant Physiol, 1984, 116: 425-430 [32]Frauke C, Peter S, Jurgen F. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J Exp Bot, 2003, 384: 1075-1083 [33]Backhausen J E, Kitzmann C, Scheibe R. Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res, 1994, 42: 75-86 [34]Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. Molecular and physiological evaluation of transgenic tobacco plants expression a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res, 1994, 3: 287-296 [35]Li X(李霞), Jiao D-M(焦德茂), Dai C-C(戴传超). The response to photo oxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(4): 408-413 (in Chinese with English abstract) [36]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 13: 1-8 [37]Jiao D-M(焦德茂), Kuang T-Y(匡廷云), Li X(李霞), Ge Q-Y(戈巧英), Huang X-Q(黄雪清), Hao N-B(郝乃斌), Bai K-Z(白克智). A limited photosynthetic CO2 concentration mechanism in transgenic rice plant over expressed maize PEPC gene. Sci China (Ser C) (中国科学·C辑), 2003, 33(1): 33-39 (in Chinese with English abstract) |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[3] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[4] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[5] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[6] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[7] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[8] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[9] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[10] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[11] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
[12] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[13] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
[14] | LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099. |
[15] | LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612. |
|