Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (03): 433-442.doi: 10.3724/SP.J.1006.2011.00433

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis on Yield and Its Components in Upland Cotton RIL

ZHANG Wei1,LIU Fang1,LI Shao-Hui1,WANG Wei1,2,WANG Chun-Ying1,ZHANG Xiang-Di1,WANG Yu-Hong1,SONG Guo-Li1,WANG Kun-Bo1,*   

  1. 1 Cotton Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; 2 Agricultural Sciences Research Institute of Coastal Region of Jiangsu, Yancheng 224002, China
  • Received:2010-06-18 Revised:2010-12-05 Online:2011-03-12 Published:2011-01-17

Abstract: The genetic linkage map of SSR, constructed by mixed linear model composite interval mapping with CRI-G6 (Acala 1517 × Dezhou 047) population was used to detect and localize QTLs, including main-effect QTLs, epistasis QTLs and Q×E interaction effects in order to provide information applicable to cotton MAS (molecular marker assisted selection breeding). In a separate analysis, 24 major QTLs for yield traits were identified in the three different years. Each stable major QTL was detected for seed yield, lint yield, lint percentage, seed index and bolls per plant, respectively. Fourteen main-effect QTLs and 20 pairs of additive-additiveepistasis QTLs were detected by joint analysis in three years,among them six main-effect QTLs and seven pairs of additive-additive epistasis QTLs interacted with environments. These stable main-effect QTLs with a large effect (accounting for over 10% of phenotypic variation), which were scanned in different years and linked closely with markers, can be used for MAS in high-yield breeding program.

Key words: Upland Cotton, Recombinant inbred line, Yield trait, Main-effect QTL, Epitasis QTL, QTL ×, Environment interaction effect

[1]Zhang P-T(张培通), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Yu J-Z(俞敬忠), Zhang T-Z(张天真). Molecular tagging of QTLs for yield and its components of G. hirsutum cv. Simian 3. Acta Agron Sin (作物学报), 2006, 32(8): 1197-1203 (in Chinese with English abstract)
[2]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417
[3]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541
[4]Ullon M, Cantrell R G, Percy R G. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci, 2000, 4: 10-18
[5]Ulloa M, Meredith W R, Shappley Z W, Kahler A L. RFLP genetic linkage maps from four F2:3 populations and a Joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200-208
[6]Shappley Z W, Jenkins J N, Meredith W R, McCarty J C. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet, 1998, 97: 756-761
[7]Shappley Z W, Jenkins J N, Zhu J, Jack C, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci, 1998, 2: 153-163.
[8]Zhang Z S, Xiao Y H, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99
[9]Shen X L, Guo W Z, Yu J, Kohel R J, Zhang T Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181
[10]Shen X L, Zhang T Z, Guo W Z, Zhu X F, Zhang X Y. Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci, 2006, 46: 61-66
[11]Guo W Z, Ma G J, Zhu Y C, Yi C X, Zhang T Z. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland Cotton. J Integr Plant Biol, 2006, 48: 320-326
[12]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland Cotton. Euphytica, 2007, 155: 371-380
[13]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genomics, 2005, 274: 428-441
[14]Ulloa M, Saha S, Jenkins J N, Meredith W R, McCarty J C, Stelly D M. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) JoinMap. J Hered, 2005, 96: 132-144
[15]Lin Z X, Zhang Y X, Zhang X L, Guo X P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009, 166: 35-45
[16]Zhang Z S, Hu M C, Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q. Coustruction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in Upland Cotton (Gossypium hirstum L.). Mol Breed, 2009, 24: 49-61
[17]Zhang X-L(张先亮), Wang K-B(王坤波), Song G-L(宋国立), Liu F(刘方), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣), Wang Y-H(王玉红). Primary QTL mapping of Upland Cotton RIL CRI-G6 by SSR marker. Cotton Sci (棉花学报), 2008, 20(3): 92-197 (in Chinese with English abstract)
[18]Song G-L(宋国立), Cui R-X(崔荣霞), Wang K-B(王坤波), Guo L-P(郭立平), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣). A rapid improved CTAB method for extraction of cotton genomic DNA. Acta Gossypii Sin (棉花学报), 1998, 10(5): 273-275 (in Chinese with English abstract)
[19]Zhang J(张军), Wu Y-T(武耀庭), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of SSR markers in cotton with PAGE/silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)
[20]Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet, 2004, 108: 280-291
[21]Van Ooijen J W. MapQTL 5.0: Software for the Mapping Quantitative Trait Loci in Experimental Populations. Wageningen, the Netherlands: Plant Research International, 2004
[22]Lacape J M, Nguyen T B, Thibivilliers S, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46: 612-626
[23]Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167-175
[24]Frelichowski J E, Palmer M B, Main D, Tomleins J P, Cantrell R J, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics, 2006, 275: 479-491
[25]Zhu J, Weir B S. Mixed model approaches for genetics analysis of quantitative traits. In: Chen L S, Ruan S G, Zhu J, eds. Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology. Singapore: World Scientific Publishing Co., 1998. pp 321-333
[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Mori- shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[27]Wang J(王娟), Guo W-Z(郭旺珍), Zhang T-Z(张天真). QTL Mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin (作物学报), 2007, 33(12): 1915-1921 (in Chinese with English abstract)
[28]Li L(李莲). Molecular Marker Study On Cotton Fiber Quality, Yield and Resistance to Verticillium Wilt Using Advanced Backcross Recombinational Lines between Upland Cotton (G. hirsutum. L.) and Island Cotton (G. barbadense. L). MS Dissertation of Chinese Academy of Agricultural Sciences, 2008. pp 81-82 (in Chinese with English abstract)
[29]Qin Y-S(秦永生), Liu R-Z(刘任重), Mei H-X(梅鸿献), Zhang T-Z(张天真), Guo W-Z(郭旺珍). QTL mapping for yield rraits in Upland Cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 2009, 35(10): 1812-1821 (in Chinese with English abstract)
[30]Devicent M C, Tanksley S D. QTL analysis of transgressive segregation in an interspcific tomato cross. Genetics, 1993, 134: 585-596
[31]Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosine. Genetics, 1991, 129: 285-295
[32]Tanksely S D, Nelson J C. Advanced backcross QTI analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203
[33]Jiang C X, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424
[34]Zhou P H, Tan Y F, He Y Q, Xu C G, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106: 326-331
[35]Specht J E, Chase K, Macrander M, Graef B L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509
[36]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
[37]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross population. Theor Appl Genet, 2005, 110: 649-659
[38]Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20: 41-51
[39]Mcmullen M D, Snook M, Lee E A, Byrne P F, Kross H, Musket T A, Houchins K, Coe Jr E H. The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyantho- cyanin synthesis in maize (Zea mays L.). Genome, 2001, 44: 667-676
[40]Hinze L L, Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids. Crop Sci, 2003, 43: 46-56
[41]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Subhash C, Li J-S(李建生). A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single- and two-locus levels. Chin Sci Bull, 2006, 51(12): 1413-1421 (in Chinese)
[42]Jansen R C, Van Ooijien J M, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33-37
[43]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651
[44]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland. Euphytica, 2006, 152: 367-378
[45]Guo L-B(郭龙彪), Luo L-J(罗利军), Xing Y-Z(邢永忠), Xu C-G(徐才国), Mei H-W(梅捍卫), Wang Y-P(王一平), Zhong D-B(钟代彬), Qian Q(钱前), Ying C-S(应存山), Shi C-H(石春海). Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2003, 17(3): 211-218 (in Chinese with English abstract)
[46]Bao J S, Bao Z Y, He P, Zhu L H. Detection of QTLs controlling heading date in the process of rice development at two environments. J Zhejiang Univ (Agric & Life Sci), 2002, 28(1): 27-32
[47]Wang B-H(汪保华), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Wu Y-T(武耀庭), Huang N-T(黄乃泰), Zhang T-Z(张天真). QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics, 2007, 34: 35-45
[1] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[2] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[3] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[4] WANG Xu-Hong,LI Ming-Xiao,ZHANG Qun,JIN Feng,MA Xiu-Fang,JIANG Shu-Kun,XU Zheng-Jin,CHEN Wen-Fu. Effect of indica pedigree on yield and milling and appearance qualities in the offspring of indica/japonica cross [J]. Acta Agronomica Sinica, 2019, 45(4): 538-545.
[5] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[6] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[7] LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu. Mapping of QTLs for resistance to rice black-streaked dwarf disease [J]. Acta Agronomica Sinica, 2019, 45(11): 1664-1671.
[8] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[9] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[10] Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO. Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties [J]. Acta Agronomica Sinica, 2018, 44(11): 1631-1639.
[11] Pin LYU, Hai-Feng YU, Jian-Hua HOU. QTL Mapping of Yield Traits Using Drought Tolerance Selected Backcrossing Introgression Lines in Sunflower [J]. Acta Agronomica Sinica, 2018, 44(03): 385-396.
[12] Mao-Ni CHAO, Qing-Yu WEN, Zhi-Yong ZHANG, Gen-Hai HU, Jin-Bao ZHANG, Guo WANG, Qing-Lian WANG. Sequence Characteristics and Expression Analysis of Potassium Transporter Gene GhHAK5 in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2018, 44(02): 236-244.
[13] SHEN Chao,LI Ding-Guo,NIE Yi-Chun,LIN Zhong-Xu. QTL Mapping for Yield and Fiber Quality Traits Using Gossypium mustelinum Chromosome Segment Introgression Lines [J]. Acta Agron Sin, 2017, 43(12): 1733-1745.
[14] LYU You-Jun,YANG Wei-Jun,ZHAO Lan-Jie,YAO Jin-Bo,CHEN Wei,LI Yan,ZHANG Yong-Shan. Genome-wide Identification and Expression Analysis of SRO Genes Family in Gossypium hirsutum L. [J]. Acta Agron Sin, 2017, 43(10): 1468-1479.
[15] YANG Yan-Long,XIAO-Fei,XU Shou-Zhen,WANG Yu-Xuan,ZUOWen-Qing,LIANG Fu-Bin,ZHANG Wang-Feng. Development of Cotton Canopy Structure Characteristics of Cotton Varieties Grown in Different Decades in Northern Xinjiang [J]. Acta Agron Sin, 2017, 43(10): 1518-1526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!