Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (05): 772-777.doi: 10.3724/SP.J.1006.2011.00772

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide Analysis of MuDR-related Transposable Elements Insertion Population in Maize

FENG Jing1,FU Xue-Qian1,WANG Ting-Ting2,TAO Yong-Sheng2,GAO You-Jun1,*,ZHENG Yong-Lian1   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
    2 Hebei Research Station of National Key Laboratory of Crop Genetic Improvement, Agricultural University of Hebei, Baoding 071000, China
  • Received:2010-10-23 Revised:2011-03-08 Online:2011-05-12 Published:2011-03-24
  • Supported by:

    This work was supported by the grants of “863” High-tech Program (No. 2006AA10A106), the China National Fundamental Fund of Personnel Training (No. J0730649) and partly supported by the open funds of the National Key Laboratory of Crop Genetic Improvement.

Abstract: Insertional mutagenesis has now been widely used to knockout genes for functional genomics. The maize Mutator transposons hold an advantage of high activity to construct large mutant libraries. In this study, a MuDR line was used to cross with an elite Chinese maize inbred line Z31. A total of 1000 M1 individuals were planted and self-pollinated to generatetheir M2 families. Experiments were conducted to investigate the insertion specificity of MuDR related transposable elements. Six hundred and ninety-five MuDR inserted flanking sequences were isolated with a modified MuTAIL-PCR method and analyzedwith bioinformatics. Three hundred and seventy-four non-redundant insertion sites were identified and 298 of them were mapped to a single locus on the integrated maize map. The results revealed some prominent features of the MuDR-related insertions of maize: random distribution across the 10 chromosomes, preferential insertion into genic sequence and favoring some classes of functional genes.

Key words: Zea mays, Mutator (Mu) transposons, MuDR elements, Flanking sequence, Insertion sites, MuTAIL-PCR

[1]Carpenter A E, Sabatini D M. Systematic genome-wide screens of gene function. Genetics, 2004, 5: 11–12
[2]Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H M, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301: 653–657
[3]Rosso M G, Y Li, Strizho N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247–259
[4]An G H, Lee S, Kim S H, Kim S R. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005, 46: 14–22
[5]Yazaki J, Kojima K, Suzuki K, Kishimoto N, Kikuchi S. The Rice PIPELINE: a unification tool for plant functional genomics. Nucl Acids Res, 2004, 32: D383–D387
[6]Zhang J, Guo D, Chang Y X, You C J, Li X W, Dai X X, Weng Q J, Zhang J W, Chen G X, Li X H, Liu H F, Han B, Zhang Q F, Wu C Y. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J, 2007, 49: 947–959
[7]Droc G, Perin C, Fromentin S, Larmande P, OryGenesD B. 2008 update: database interoperability for functional genomics of rice. Nucl Acids Res, 2009, 37: D992–D995
[8]Lunde C F, Morrow D J, Roy L M, Walbot V. Progress in maize gene discovery: a project update. Funct Integr Genomics, 2003, 3: 25–32
[9]Settles A M, Holding D R, Tan B C, Latshaw S P, Liu J, Suzuki M, Li L, O'Brien B A, Fajardo D S, Wroclawska E, Tseung C, Lai J S, Hunter C T, Avigne W T, Baier J, Messing J, Hannah L C, Koch K E, Becraft P W, Larkins B A, McCarty D R. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics, 2007, 8: 116
[10]McClintock B. Mutable loci in maize. Carnegie Inst Wash Year Book, 1948, 47: 155–169
[11]Liu W T, Gao Y J, Teng F, Shi Q, Zheng Y L. Construction and genetic analysis of mutator insertion mutant population in maize. Chin Sci Bull, 2006, 51: 2604–2610
[12]Walbot V. Saturation mutagenesis using maize transposons. Curr Opin Plant Biol, 2000, 3: 103–107
[13]Brutnell T P. Transposon taggging in maize. Funct Integr Genomics, 2002, 2: 4–12
[14]Dooner H K, Belachew R. Transposition pattern of the maize element Ac from the bz-m2 (Ac) allele. Genetics, 1989, 122: 447–457
[15]Brutnell T P, Conrad L J. Transposon tagging using Activator (Ac) in maize. Methods Mol Biol, 2003, 236: 157–176
[16]Cowperthwaite M, Park W, Xu Z N, Yan X H, Maurais S C, Dooner H K. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell, 2002, 14: 713–726
[17]Robertson D S. Characterization of a mutator system in maize. Mutation Res, 1978, 51: 21–28
[18]Lisch D. Mutator transposons. Trends Plant Sci, 2002, 7: 498–504
[19]Settles A M. Maize community resources for forward and reverse genetics. Maydica, 2005, 50: 405–411
[20]Kriz A L, Larkins B A. Molecular Genetic Approaches to Maize Improvement Biotechnology in Agriculture and Forestry, vol 63. Heidelberg: Springer-Verlag Berlin Heidelberg, 2009. pp 143–159
[21]Walbot V, Hulbert G N. MuDR/Mu Transposon of Maize. Washington, D C: Amer Soc Microbiology, 2002
[22]Bennetzen J L. The Mutator transposable element system of maize. Curr Top Microbiol Immunol, 1996, 204: 195–229
[23]Liu S, Yeh C T, Ji T, Ying K, Wu H, Tang H M, Fu Y, Nettleton D, Schnable P S. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet, 2009, 5: e1000733
[24]Hershberger R J, Warren C A, Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA, 1991, 88: 10198–202
[25]Takumi S, Walbot V. Epigenetic silencing and unstable inheritance of MuDR activity monitored at four b22-mu alleles in maize (Zea mays L.). Genes Genet Syst, 2007, 82: 387–401
[26]Cresse A D, Hulbert S H, Brown W E, Lucas J R, Bennetzen J L. Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics, 1995, 140: 315–24
[27]Fernandes J, Dong Q F, Schneider B, Morrow D J, Nan G L, Brendel V, Walbot V. Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol, 2004, 5: R82
[28]Settles A M, Latshaw S, McCarty D R. Molecular analysis of high-copy insertion sites in maize. Nucl Acids Res, 2004, 32: e54
[29]Frey M, Stettner C, Gierl A. A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J, 1998, 13: 717–721
[30]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8: 457–463
[31]Yi G, Luth D, Goddman T D, Lawrence C L, Becraft P W. High-throughput linkage of Mutator insertion sites in maize. Plant J, 2009, 58: 883–892
[32]Liu S Z, Dietrich C R, Schnable P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics, 2009, 183: 1215–1225
[33]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25–29
[34]Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448–3449
[35]Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504
[36]McCarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66: 895–905
[37]Porch T G, Tseung C W, Schmelz E A, Settles A M. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250–263
[38]Tan B C, Schwartz S H, Zeevaart J A, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235–12240
[39]Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264–274
[40]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84
[41]May B P, Liu H, Vollbrecht E, Senior L, Rabinowicz P D, Roh D, Pan X, Stein, Freeling M, Alexander D, Martienssen R. Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA, 2003, 100: 11541–11546
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[3] ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912.
[4] MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710.
[5] Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871.
[6] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[7] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[8] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
[9] Qi-Yue WANG, Shu-Jun MENG, Ke ZHANG, Zhan-Hui ZHANG, Ji-Hua TANG, Dong DING. Investigation of Maize miRNA Involved in Developing-ear Heterosis [J]. Acta Agronomica Sinica, 2018, 44(6): 796-813.
[10] Qing-Fei WU, Lei QIN, Lei DONG, Ze-Hong DING, Ping-Hua LI, Bai-Juan DU. Transcriptome Analysis on a Maize Photosynthetic Mutant hcf136 (high chlorophyll fluorescence 136) [J]. Acta Agronomica Sinica, 2018, 44(04): 493-504.
[11] YAN Lei,YANG Zong-Ju,SU Liang,XIAO Yang,GUO Lin,SONG Mei-Fang,SUN Lei,MENG Fan-Hua,BAI Jian-Rong,YANG Jian-Ping. Molecular Cloning of Two Maize (Zea mays) CRY1a Genes and Their Expression Patterns of in Response to Different Light Treatments [J]. Acta Agron Sin, 2016, 42(09): 1298-1308.
[12] YUAN Huan-Huan,SUN Guang-Hua,YAN Lei,GUO Lin,FAN Xiao-Cong,XIAO Yang,MENG Fan-Hua,SONG Mei-Fang,ZHAN Ke-Hui,YANG Qing-hua, YANG Jian-Ping. Molecular Cloning of ZmPP6C Gene and Its Expression Patterns in Response to Light and Stress Treatments in Maize (Zea mays L.) [J]. Acta Agron Sin, 2016, 42(02): 170-179.
[13] LI Cong-Feng,ZHAO Ming,LIU Peng,ZHANG Ji-Wang,YANG Jin-Sheng,DONG Shu-Ting. Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China [J]. Acta Agron Sin, 2014, 40(11): 1990-1998.
[14] MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen,QI Bao-Xiu. Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.) [J]. Acta Agron Sin, 2014, 40(02): 313-319.
[15] LI Zhao,ZHANG Deng-Feng,SUN Yong-Hua,WU Xun,LI Yong-Xiang,SHI Yun-Su,SONG Yan-Chun,YANG De-Guang,WANG Tian-Yu,LI Yu. Sequence Diversity of ZmLEC1 and Association Analysis of Embryogenic calli Formation Ability in Maize [J]. Acta Agron Sin, 2013, 39(10): 1727-1738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!