Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (08): 1389-1397.doi: 10.3724/SP.J.1006.2011.01389
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GUO Li-Xiang1,2,GAO Shi-Qing2,**,TANG Yi-Miao2,WANG Yong-Bo2,LIU Mei-Ying3,ZHANG Zhao3,XU Bei1,2,LIAN Wei-Wei1,2,ZHAO Chang-Ping2,*
[1]Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA, 2004, 101: 6309–6314 [2]Liu X(刘欣), Li Y(李云). Progresses on transcription factors related to plant stress-tolerance. Chin Agric Sci Bull (中国农学通报), 2006, 22(4): 61–65 (in Chinese) [3]Miller J, Mclachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J, 1985, 4: 1609–1614 [4]Lee M S, Gippert G P, Soman K V, Case D A, Wright P E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 1989, 245: 635–637 [5]Laity J H, Lee B. Zinc-?nger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11: 39–46 [6]Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081–1085 [7]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871 [8]Kam J, Gresshoff P, Shorer R. Expression analysis of RING zinc ?nger genes from Triticum aestivum and identi?cation of TaRZF70 that contains four RING-H2 domains and differentially responds to water de?cit between leaf and root. Plant Sci, 2007, 173: 650–659 [9]Borden K L, Freemont P S. The RING ?nger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol, 1996, 6: 395–401 [10]Freemont P S. Ubiquitination: RING for destruction. Current Biol, 2000, 10: R84–R87 [11]Satijn D P, Gunster M J, van der Vlag J, Hamer K M, Schul W, Alkema M J, Saurin A J, Freemont P S, van Driel R, Otte A P. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol, 1997, 17: 4105–4113 [12]Yang X-H(杨秀红), Sun C(孙超), Hu Y-L(胡鸢雷), Lin Z-P(林忠平). Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum. J Biosci , 2008, 33: 103–112 [13]Lagudah E S, Dubcovsky J, Powell W. Wheat genomics. Plant Physiol Biochem, 2001, 39: 335–344 [14]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 377–403 [15]Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA, 1998, 95: 5857–5864 [16]Hagio T. Optimizing the particle bombardment method for efficient genetic transformation. Jpn Agric Res Q, 1998, 32: 239–247 [17]Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice. Theor Appl Genet, 1998, 97: 267–274 [18]Anoop N, Gupta A K. Transgenic indica rice cv IR-50 overexpressing Vigna aconitifolia delta-1-pyrroline-5-carboxylae synthetase cDAN shows tolerance to high salt. J Plant Biochem Biotechnol, 2003, 12: 109–116 [19]Liu L-H(刘丽华), Lin L(林玲), Lu G-D(鲁国东), Wang Z-H(王宗华). Cloning, expression and analysis of a rice C3HC4-type zinc finger protein encoding gene. Chin Agric Sci Bull (中国农学通报), 2009, (15): 35–39 (in Chinese) [20]Zhang Y Y, Yang C W, Li Y, Zheng N Y, Chen H, Zhao Q Z, Gao T, Guo H S, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19: 1912–1929 [21]Freemont P S. Ubiquitination: RING for Destruction. Curr Biol, 2000, 10: 84–87 [22]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734–2746 [23]Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445–462 [24]Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007, 226: 1007–1016 [25]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410–417 [26]Wu X-C(吴学闯), Cao X-Y(曹新有), Chen M(陈明), Zhang X-K(张晓科), Liu Y-N(刘阳娜), Xu Z-S(徐兆师), Li L-C(李连城), Ma Y-Z(马有志). Isolation and expression patten assay of a C3HC4-type RING zinc finger protein gene GmZFP1 in Glycine max L. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 343–348 (in Chinese with English abstract) [27]Qiao H, Chang K N, Yazaki J, Ecker J R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev, 2009, 23: 512–521 [28]Zeba N, Isbat M, Kwon N J, Lee M O, Kim S R, Hong C B. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009, 229: 861–871 [29]Xu R Q, Li Q Q. A RING-H2 zinc-?nger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol, 2003, 53: 37–50 |
[1] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[2] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[3] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
[4] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
[5] | LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612. |
[6] | QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786. |
[7] | ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480. |
[8] | LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439. |
[9] | WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, CHEN Xi, MENG Tian-Yao, YANG Yang, XIONG Fei, CHEN Ying-Long, DAI Qi-Gen. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2471-2480. |
[10] | LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198. |
[11] | WEI Huan-He,GE Jia-Lin,ZHANG Xu-Bin,MENG Tian-Yao,LU Yu,LI Xin-Yue,TAO Yuan,DING En-Hao,CHEN Ying-Long,DAI Qi-Gen. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress [J]. Acta Agronomica Sinica, 2020, 46(8): 1238-1247. |
[12] | LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265. |
[13] | QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. |
[14] | DONG Qing-Yuan,MA De-Qing,YANG Xue,LIU Yong,HUANG Chang-Jun,YUAN Cheng,FANG Dun-Huang,YU Hai-Qin,TONG Zhi-Jun,SHEN Jun-Ru,XU Yin-Lian,LUO Mei-Zhong,LI Yong-Ping,ZENG Jian-Min. Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank [J]. Acta Agronomica Sinica, 2020, 46(6): 869-877. |
[15] | HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512. |
|