Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (02): 369-373.doi: 10.3724/SP.J.1006.2012.00369

• RESEARCH NOTES • Previous Articles     Next Articles

Resistance QTL Mapping Aanalysis for Storage Pest Sitophilus zeamais in Wheat

CHEN Zhen-Hong1,LI Jun1,2,LIU Ya-Xi1,LI Tao-Shu2,DENG Mei1,LI Jing-Qiong1,WANG Ji-Rui1,WEI Yu-Ming1,YANG Wu-Yun2,ZHENG You-Liang1,*   

  1. 1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2011-06-16 Revised:2011-10-12 Online:2012-02-12 Published:2011-12-01
  • Contact: 郑有良, E-mail: ylzheng@sicau.edu.cn

Abstract: Quantitative trait loci (QTLs) associated with Sitophilus zeamais resistance were identified using a population (127 recombined inbred lines) from wheat cross Chuannong 16×Chuanmai 42. In a stimulated storage environment, adult, larva, and egg of S. zeamais were artificially fed with wheat seeds harvested in 2008 and 2009, respectively. Five QTLs located on chromosomes 3B, 2D, 3D, and 4B were detected with phenotypic contributions of 10.2%, 8.5%, 8.3%, 8.5%, and 11.3%, respectively. The QTLs located between Xbarc6 and Xgwm112 on chromosome 3D were identified in seeds from both growing years, which explained 8.3–8.5% of the phenotypic variance. The positive allele on this locus was from parent Chuannong 16.

Key words: Common wheat, QTL mapping, Resistance to Sitophilus zeamais

[1]Maddrid F J, White N D G, Loschiavo S R. Insert in stored cereals and their association with farming practiced in southern Manitoba. Can Entomol, 1990, 122: 515–523
[2]Jemberei B, Obeng-Ofori D, Hassanali A, Nyamasy G N N. Products derived from the leaves of Ocimum kilimannds charicum (Labiatae) as poat-harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res, 1995, 85: 361–367
[3]Matsumoto I, Asakura T, Ohmori T, Tamura T, Abe K. Cathepsin D-like aspartic proteinase occurring in a maize weevil, Sitophilus zeamais, as a candidate digestive enzyme. Biosci Biotecnol Biochem, 2009, 73: 2338–2340
[4]Gruden K, Kuipers A G J, Guncar G, Slapar N, Strukelj B, Maarten A. Jongsma. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases. Insect Biochem Mol Biol, 2004, 34: 365–375
[5]Araujo R A, Guedes R N C, Oliveira M G A, Ferreira G H. Enhanced proteolytic and cellulolytic activity in insecticide-resistant strains of the maize weevil, Sitophilus zeamais. J Stored Prod Res, 2008, 44: 354–359
[6]Anselme C, Pérez-Broca V, Vallier A, Vincent-Monegat C, Charif D, Latorre A, Moya A, Heddi A. Identification of the weevil immune genes and their expression in the bacteriome tissue. BMC Biol, 2008, 6: 43–56
[7]García-Lara S, Khairallah M M, Vargas M, Bergvinson D J. Mapping of QTL associated with maize weevil resistance in tropical maize. Crop Sci, 2009, 49: 139–149
[8]García-Lara S, Burt A J, Arnason J T, Bergvinson D J. QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Sci, 2010, 50: 815–825
[9]Li J(李俊), Wei H-T(魏会廷), Hu X-R(胡晓蓉), Li C-S(李朝苏), Tang Y-L(汤永禄), Liu D-C(刘登才), Yang W-Y(杨武云). Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42. Acta Agron Sin (作物学报), 2011, 37(2): 255–262 (in Chinese with English abstract)
[10]Zheng Y-L(郑有良), Lan X-J(兰秀锦), Wei Y-M(魏育明). Analysis of agronomic traits of new wheat variety Chuannong 16. J Sichuan Agric Univ (四川农业大学学报), 2002, 20(3): 194–197 (in Chinese with English abstract)
[11]Xu Y-P(徐玉平), Peng Z-S(彭正松), Liao J(廖杰), Yang W-Y(杨武云). Study on the seedling leaves grow of recombined inbred lines (RILs) of wheat variety Chuanmai 42 × Chuannong 16. J China West Normal Univ (Nat Sci) (西华师范大学学报•自然科学版), 2009, 30(2): 115–120 (in Chinese with English abstract)
[12]Shen L(沈蕾), Long H(龙海), Yan Z-H(颜泽洪), Wei Y-M(魏育明), Zheng Y-L(郑有良). Molecular cloning of a novel low-molecular-weight glutenin subunit gene from wheat variety “Chuanmai 42”. Hereditas (遗传), 2006, 28(1): 57–64 (in Chinese with English abstract)
[13]Liao J(廖杰), Li J(李俊), Tang Y-L(汤永禄), Yang Y-M(杨玉敏), Zeng Y-C(曾云超), Wei H-T(魏会廷), Peng Z-S(彭正松), Hu X-R(胡晓蓉), Yang W-Y(杨武云). Evaluation of important agronomic traits in recombinant inbred lines of Chuanmai 42 × Chuannong 16. Southwest China J Agric Sci (西南农业学报), 2007, 20(2): 300–304 (in Chinese with English abstract)
[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[15]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175
[16]Bassam B J, Caetano A G, Gresshoff P M. Fast and sensitive silverstaining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80–83
[17]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468
[18]McCouch S R, Cho Y G, Yano M, Paule E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[19]Zhuang J, Lin H, Lu J, Qian R, Hittalmani S, Huang N, Zheng L. Analysis of QTLs environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799–808
[20]Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971–1974
[21]Ahn S, Anderson J A, Sorrells M E, Tanksley S D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet, 1993, 241: 483–490
[1] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[2] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[3] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[4] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[5] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[6] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[7] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[8] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[9] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[10] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[11] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[12] Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817.
[13] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[14] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[15] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
Full text



No Suggested Reading articles found!