Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (02): 360-368.doi: 10.3724/SP.J.1006.2012.00333

• RESEARCH NOTES • Previous Articles     Next Articles

Cloning and Expression Analysis of GmMYB Induced by Abiotic Stresses

SUN Xia1,**,LIU Jin-Yue1,**,YUAN Xiao-Hui1,PAN Xiang-Wen1,DU Wei-Guang2,REN Hai-Xiang2,MA Yong-Bo3,Jun ABE 4,QIU Li-Juan5,*,LIU Bao-Hui1,*   

  1. 1 Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences / Key Laboratory of Mollisols Agroecology, Chinese Academy of Sciences, Harbin 150081, China; 2 Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, China; 3 Liaoning Agricultural Environmental Protection Monitoring Station, Shenyang 110034, China; 4 Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-06-21 Revised:2011-10-12 Online:2012-02-12 Published:2011-12-01
  • Contact: 刘宝辉, E-mail:liubh@neigaehrb.ac.cn; 邱丽娟, E-mail:qiu_lijuan@263.net

Abstract: Response to external environment is the outcome of stress-induced gene expression. In this paper, based on one stress-induced EST sequence, we cloned four R2R3-MYB genes from soybean cultivar Dongnong 42, whose genomic sequences consisted of three exons and two introns. Three of them corresponding to Gm02g1300, Gm03g38040, and Gm10g01340 are respectively consistent with the sequences of Willams 82. A mutation at the 375th single nucleotide in the sequence of Gm19g40650 from Dongnong 42 caused a synonymous amino acid substitution (E125–D125). To test the relationship of four MYB genes with stress resistance, we treated the seedlings of cultivar Dongnong 42 with abiotic stresses including salt, alkali, drought and low temperature in the artificial climate chamber. Quantitative PCR analysis indicated that all of the four genes were transient down-regulated or up-regulated when subjected to the stresses, but different in the expression time, level and tendency. Gm02g01300 was induced by drought stress while Gm03g38040 was strongly induced by multiple stresses, indicating that they play important roles in responding to external stresses. There were also differences in the expression of individual gene between cotyledons and embryos. These results under a variety of abiotic stress conditions suggest that the four R2R3-MYB genes are different not only in the expression patterns, but also in the regulation modes.

Key words: Abiotic stress, GmMYB, Bud period, Expression analysis

[1]Zhang C-Y(张椿雨), Long Y(龙艳), Feng J(冯吉), Meng J-L(孟金陵). Transcriptional regulation of plant genes and its significance in biology. Heredites (遗传), 2007, 29(7): 793-799 (in Chinese with English abstract)
[2]Nakashima K, Yamaguchi-Shinozak K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Plant Physiol, 2006, 126: 62-71
[3]Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92 and GmMYB177 genes confer stress tolerance in transgenic Arabiopsis plants. Cell Res, 2008, 18: 1047-1060
[4]Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol, 2006, 60: 3553-3558
[5]Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and poly cotton. Plant Mol Biol, 2003, 51: 313-325
[6]Li J, Michael T C, Tao J. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified form rice subspecies indica and japonica genomes. Plant Physiol, 2004, 134: 575-585
[7]Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E. Maize R2R3-Myb genes: sequence analysis reveals amplification in the higher plants. Genetics, 1999, 153(1): 427-444
[8]Liu L(刘蕾), Du H(杜海), Tang X-F(唐晓凤), Wu Y-M(吴燕民), Huang Y-B(黄玉碧), Tang Y-X(唐益雄). The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas (遗传), 2008, 30(10): 1265-1271 (in Chinese with English abstract)
[9]Chen B J, Wang Y, Hu Y L, Wu Q, Lin Z P. Cloning and characterization of drought-inducible MYB gene from Boea crassifolia. Plant Sci, 2005, 168: 493-500
[10]Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115-127
[11]Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K. Overexpression of an R1R2R3-MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739-1751
[12]Ma Q B, Dai X Y, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X S, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009, 150: 244-256
[13]Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Div, 2001, 15: 2122-2133
[14]Miyake K, Ito T, Sends M. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237-245
[15]Bender J, Fink G R. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 5655-5660
[16]Kranz H D, Denekamp M, Greco R, Jin H L, Leyva A, Meissner R C, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 1998, 16: 263-276
[17]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447-456
[18]Hoeren F U, Dolferus R, Wu Y, Peacock W J, Dennis E S. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics, 1998, 149: 479-490
[19]Yoo J H, Park C Y, Kim J C, Heo W D, Cheong M S, Park H C, Kim M C, Moon B C, Choi M S, Kang Y H. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280: 3697-3706
[20]Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weissharr B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150-6161
[21]Zhu J, Verslues P E, Zheng X, Lee B H, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong C H, Zhu J K. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA, 2005, 102: 9966-9971
[22]Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225: 1245-1253
[23]Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263-1274
[24]Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol, 2002, 129: 661-677
[25]Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu L J, Gu H. Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun, 2006, 341: 1155-1163
[26]Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498-3504
[27]Preston J, Wheeler J, Heazlewood J, Li S F, Parish R W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J, 2004, 40: 979-995
[28]Celenza J L, Quiel J A, Smolen G A, Merrikh H, Silvestro A R, Normanly J, Bender J. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol, 2005, 137: 253-262
[29]Lippold F, Sanchez D H, Musialak M, Schlereth A, Scheible W R, Hincha D K, Udvardi M K. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol, 2009, 149: 1761-1772
[30]Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635
[31]Gigolashvili T, Berger B, Mock H P, Müller C, Weisshaar B, Flügge U I. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J, 2007, 50: 886-901
[32]Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454
[33]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-2000
[34]Liang Y K, Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol, 2005, 15: 1201-1206
[35]Feng C P, Andreasson E, Maslak A, Mock H P, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci, 2004, 167: 1099-1107
[36]Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng X W. Organ-specific expression of Arabidopsis genome during development. Plant Physiol, 2005, 138: 80-91
[37]Seo P J, Xiang F N, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275-289
[38]Denekamp M, Smeekens S C. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol, 2003, 132: 1415-1423
[39]Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 2003, 15: 2551-2565
[40]Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham M A. Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol, 2007, 144: 752-767
[41]Yang W-J(杨文杰), Wu Y-M(吴燕民), Tang Y-X(唐益雄). Expression and functional analysis of GmMYBJ6 from soybean. Heredites (遗传), 2009, 31(6): 645-653 (in Chinese with English abstract)
[42]Liu B H, Watanabe S, Uchiyama T, Kong F J, Kanazawa A, Xia Z J, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 1-13
[43]Kong F J, Liu B H, Xia Z J, Sato S S, Kim B, Watanabe A, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1-12
[44]Khuri S, Bakker F T, Dunwell J M. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol, 2001, 18: 593-605
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[4] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[5] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[8] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[9] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[10] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[11] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[12] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[13] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[14] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[15] WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!