Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 1127-1134.doi: 10.3724/SP.J.1006.2012.01127
• RESEARCH NOTES • Previous Articles Next Articles
XIA Kai1,2,XU Shuang-Hong1,WANG Xiang1,DAI Lin-Jian2,LI Peng-Fei3,LUO Jian-Xing2,QI Shao-Wu2,YANG Qiong2,ZHOU Qing-Ming2,*
[1]Chaplin J R. Production factors affecting chemical compounds of the tobacco leaf. Recent Adv Tob Sci, 1980, (6): 3–63[2]Sims J L, Casy M, Legget J E. Effect of transplant water fertilization on growth and chemical composition of burley tobacco. Annual report of the college of agriculture and the K. Y. Agric Exp Station, 1981, 59–60[3]Cao Z-H(曹志洪), Hu G-S(胡国松). Relationship between control of potassium and trace elements and quality of tobacco leaf. Soils (土壤), 1993, 25(3): 119–128 (in Chinese)[4]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Function expression of a probable Arabidopsis thaliana potassium channel in Saccharomycex cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740[5]Sentenac H, Bonneaud N, Minet M. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663–665[6]Lu L-M(鲁黎明). In silico cloning and bioinformatic analysis of TPK1 gene in tobacco. Sci Agric Sin (中国农业科学), 2011, 44(1): 28–35 (in Chinese with English abstract)[7]Sano T, Becker D, Ivashikina N, Wegner L H, Zimmermann U, Roelfsema M R, Nagata T, Hedrich R. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J, 2007, 50: 401–413[8]Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema M R G, Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+ -sensing ion channel. FEBS, 2000, 486, 93–98[9]Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA, 2003, 100: 5549–5554[10]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347–1360[11]Dai L-J(戴林建), Xu S-H(徐双红), Zhu L-S(朱列书), Zhong J(钟军), Xia K(夏凯). Research of tobacco offspring characters variation causing by introducted DNA of high potassium plant. Crop Res (作物研究), 2010, (2): 109–111 (in Chinese with English abstract)[12]Dai L-J(戴林建), Xu S-H(徐双红), Sun H-L(孙焕良), Wang K(王坤), Zhong J(钟军). SRAP analysis on the purity of tobacco D4 generation with portulaca DNA. Tob Sci (烟草科技), 2010, (7): 48–52 (in Chinese with English abstract)[13]Yang T-Z(杨铁钊), Peng Y-F(彭玉富). Potassium accumulation characteristics of rich-potassium genotypic flue-cured tobacco. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 750–753 (in Chinese)[14]Yang T-Z(杨铁钊), Yang Z-X(杨志晓), Nie H-Z(聂红资), Zhang X-Q(张小全), Liu Y-J(刘友杰), Shang X-Y(尚晓颍), Ren Z-Y(任周营), Fan J-H(范进华). Potassium accumulation and root physiological characteristics of potassium-enriched flue-cured tobacco genotypes. Acta Agron Sin (作物学报), 2009, 35(3): 535–540 (in Chinese with English abstract)[15]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Studies in screening indices and screening environments for efficient potassium wheat genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(2): 277–281 (in Chinese with English abstract)[16]Verwoerd T C, Dekker B M, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res, 1989, 17: 2362[17]Guo Z-K(郭兆奎), Yang Q(杨谦), Yan P-Q(颜培强), Wan X-Q(万秀清). Cloning and homology modeling of a potassium channel gene NKC1 from Nicotiana rustica. Acta Tab Sin (中国烟草学报), 2008, 14(5): 63–68 (in Chinese with English abstract)[18]Liu K, Luan S. Intracellular potassium sensing of SKOR, a shaker-type K-channel from Arabidopsis. Plant J, 2006, 46, 260–268[19]Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud J B, Sentenac H. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276, 3215–3221[20]Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94, 647–655[21]Mao R-D(毛达如). Plant Nutrition Research (植物营养研究). Beijing: Beijing Agricultural University Press, 1994. pp 132–135 (in Chinese)[22]Min S-Z(闵水珠). Molecular biology research progress on plant potassium ion channel. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(3): 163–169 (in Chinese with English abstract)[23]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827–8832[24]Zhao X-Q(赵学强), Jie X-L(介晓磊), Li Y-T(李有田), Xu X-J(许仙菊), Tan J-F(谭金芳), Hua D-L(化党领). Dynamics analysis of absorption of potassium ion in wheat with different genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(3): 307–312 (in Chinese with English abstract)[25]Wang Z-Q(汪自强), Dong M-Y(董明远). Efficiency of using potassium for spring soybean varieties with different level of pitassium. Soybean Sci (大豆科学), 1996, 15(3): 202–207 (in Chinese with English abstract)[26]Su B, Han X G, Huang J H, Qu C M. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient Stressed environments. Acta Ecol Sin, 2000, 20: 335–343[27]Bridgham S D, McClaugherty C A, Richardson C J, Pastor J. Nutrient-use-efficiency: a litter fall index, a model and a test along a nutrient availability gradient in North Carolina peat lands. Am Nat, 1995, 145: 1–21[28]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the K-Efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)[29]Mpelasoka B S, Schachtman D P, Treeby M T, Thomas M R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res, 2003, 9: 154–168 |
[1] | XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311. |
[2] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[3] | ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332. |
[4] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[5] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[6] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[7] | WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. |
[8] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[9] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[10] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[11] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[12] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[13] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[14] | ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168. |
[15] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
|