Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1875-1883.doi: 10.3724/SP.J.1006.2012.01875
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WANG Hou-Miao,HUANG Jia-Quan,LEI Yong,YAN Li-Ying,WANG Sheng-Yu,JIANG Hui-Fang,REN Xiao-Ping,LOU Qing-Ren, LIAO Bo-Shou*
[1]http://faostat.fao.org/site/339/default.aspx [2012-4-01][2]Yu S-L(禹山林). Peanut Breeding in China (中国花生遗传育种学). Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese)[3]Wicklow D T. Toxigenic Fungi-Their Toxins and Health Hazard. Samuels GL: Toxigenic fungi as Ascomycetes, 1984[4]Rensburg S J, Cook-Mozaffari P, Schalkwyk D J, Watt J J, Vincent T J. Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. J Cancer, 1985, 51: 713-726[5]Williams J H, Phillips T D, Jolly P E, Stiles J K, Jolly C M, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 2004, 80: 1106-1122[6]Payne G A, Brown M P. Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol, 1998, 36: 329-362[7]Keen N T. Isolation of phytoalexins from germination seeds of peanut. Phytopathol, 1975, 65: 91-92[8]Ingham J L. 3,5,4-Trihydroxystibene as a phytoalexin from groundnut (Arachis hypogaea L.). Phytochem, 1976, 15: 1791-1793[9]Basa S M. A phytoalexin and aflatoxin producing peanut seed culture system. Peanut Sci, 1994, 21: 103-134[10]Hen S-L(何水林), Zheng J-G(郑金贵), Lin M(林明). Advances of biological function, regulatory mechanism of biosynthesis and genetic engineering of stilbenes in plant. J Agric Biotechnol (农业生物技术学报), 2004, 12(1): 102-108 (in Chinese with English abstract)[11]Schroder G, Brown J W, Schroder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem, 1988, 172: 161-169[12]Stark L, Nelke B, Hanbler G. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep, 1997, 16: 668-673[13]Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res, 1999, 8: 179-189[14]Thomzik J E, Stenzel K, Stocker R. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum M.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol, 1997, 51: 265-278[15]Hain R, Bieseler B, Kindl H. Expression of a stilbene gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325-335[16]Chung I M, Park M R, Chun J C, Yun S J. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci, 2003, 164: 103-109[17]Jeandet P, Bessis R, Maume B F, Meunier P, Peyron D, Trollat P. Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem, 1995, 43: 316-319[18]Holme A L, Pervaiz S. Resveratrol in cell fate decisions. J Bioenerget Biomembranes, 2007, 39: 59-63[19]Chun M M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol, 2002, 63: 99-104[20]Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc, 2008, 67: 42-47[21]Kerry N L, Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis, 1997, 135: 93-102[22]Wang Z, Huang Y, Zou J. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Intl J Mol Med, 2002, 9: 77-79[23]Heilbronn L K, Jonge L, Frisard M I, DeLany J P, Larson Meyer D E, Rood J, Nguyen T, Martin C K, Volaufova J, Most M M, Greenway F L. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. Am Med Assoc, 2006, 295: 1539-1548[24]Bertelli A A, Das D K. Grapes, resveratrol, and heart health. J Cardiovascular Pharmacol, 2009, 54: 468[25]Sanders T H, McMichael R W, Hendrix K W .Occurrence of resveratrol in edible peanuts. J Agric Food Chem, 2000, 48: 1243-1246[26]Sobolev V S, Cole R J. Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem, 1999, 47: 1435-1439[27]Chen R S, Wu P L, Robin Y Y. Peanut roots as a source of resveratrol. J Agric Food Chem, 2002, 50: 1665-1667[28]Fajardo J E, Waniska R D, Cuero R G, Pettit R E. Phenolic compounds in peanut seed enhanced elicitation by chitosan and effects of growth and aflatoxin B1 producing by Aspergillus flavus. Food Biotechnol, 1994, 8: 191-211[29]Amaya F J, Young C T, Norden A J. Chemical screening for Aspergillus flavus resistance in peanut. Oleagineux, 1990, 35: 255-259[30]Guo B Z, Russin J S, Brown R L, Cleveland T E, Widstrom N W. Resistance to aflatoxin contamination in corn as influenced by relative humidity and kernel germination. J Food Protect, 1996, 59: 276-281[31]Guo B Z, Brown R L, Lax A L, Cleveland T E, Russin J S, Widstrom N W. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus. J Food Protect, 1998, 61: 98-102[32]Guo B Z, Chen Z Y, Brown R L, Lax A R, Cleveland T E, Russin J S, Mehta A D, Selitrennikoff C P, Widstrom N W. Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathol, 1997, 87: 1174-1178[33]Dorner J W, Cole R J, Sanders T H, Blankenship P D. Interrelationship of kernel water activity, soil temperature, maturity and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia, 1989, 105: 117-128[34]Liao B S, Zhuang W J, Tang R H, Zhang X Y, Shan S H, Jiang H F, Huang J Q. Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci, 2009, 36: 21-28[35]Chen Z Y, Brown R L, Damann K E, Cleveland T E. Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathol, 2004, 94: 938-945[36]Wang, M L, Pittman R N. Resveratrol content in seeds of peanut germlasm quantified by HPLC. Plant Genet Resour: Characterization and Utilization, 2008, 7: 80-83[37]Xiao D-R(肖达人), Wang S-Y(王圣玉), Zhang H-L(张洪玲). Rapid identifying method for resistance to aflatoxin production in peanut. Chin J Oil Crop Sci (中国油料作物学报), 1999, 21(3): 72-76 (in Chinese with English abstract)[38]Tian L-R(田立荣), Liao B-S(廖伯寿), Wang S-Y(王圣玉), Lei Y(雷永), Yan L-Y(晏立英), Huang J-Q(黄家权), Li D(李栋), Ren X-P(任小平), Xiao Y(肖洋). Evaluation of resistance to aflatoxin formation in peanut RILs. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(4): 455-459 (in Chinese with English abstract)[39]Liao B-S(廖伯寿), Lei Y(雷永), Li D(李栋),Wang S-Y(王圣玉), Huang J-Q(黄家权), Ren X-P(任小平), Jiang H-F(姜慧芳), Yan L-Y(晏立英). Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt Developed from recombinant inbred lines. Acta Agron Sin (作物学报), 2010, 36(8): 1296-1301 (in Chinese with English abstract)[40]Holmes R A, Boston R S, Payne G A. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbio Biot, 2008, 78: 559-572[41]Norton R A. Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. J Agric Food Chem, 1999, 47: 1230-1235[42]DeLucca A M, Daigle D. Depression of aflatoxin production by flavonoid-type compounds from peanut shells. Phytopathol, 1987, 77: 1560-1563 [43]Azaizeh H A, Pettit R E, Sarr B A, Phillips T. Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Mycopathologia, 1990, 110(3): 125-132[44]Liang X-Q(梁炫强), Zhou G-Y(周桂元), Zou S-C(邹世春). Differential induction of resveratrol in susceptible and resistant peanut seeds infected by Aspergillus flavus. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(1): 59-62 (in Chinese with English abstract)[45]Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in and grapes wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA, 1997, 94: 14138-14143 |
[1] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[4] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[5] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[6] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[7] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[8] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[9] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[10] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[11] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[12] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
[13] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
[14] | HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108. |
[15] | XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137. |
|