Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (04): 589-598.doi: 10.3724/SP.J.1006.2013.00589

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of Dense and Erect Panicle 1 Gene (TaDep1) Located on Common Wheat Group 5 Chromosomes and Development of Allele-Specific Markers

LIU Ya-Nan1,XIA Xian-Chun1,HE Zhong-Hu1,2,*   

  1. 1 Institute of Crop Sciences/National Wheat Improvement Center, Beijing 100081, China; 2 CIMMYT China Office, c/o Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-10-21 Revised:2013-01-16 Online:2013-04-12 Published:2013-01-28
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

Abstract:

Dense and erect panicle 1 (OsDep1) gene is an important QTL controlling yield associated traits such as panicle length, erect type, and grain density in rice. In the present study, full-length genomic DNA sequences of TaDep1 on common wheat group 5 chromosomes were cloned by homologous cloning approach based on the sequences of rice OsDep1. TaDep1 has five exons and four introns, similar to that of rice OsDep1. The coding sequences of TaDep1-A1, TaDep1-B1, and TaDep1-D1 were 918, 888, and 900 bp, encoding polypepetides of 305, 295, and 299 amino acids, respectively. Five allelic variants on TaDep1-A1 locus, four on TaDep1-B1 locus, and two on TaDep1-D1 locus were identified. Three pairs of complementary dominant markers and one codominant marker were developed based on the sequence polymorphisms presented in allelic variants of TaDep1-A1 and TaDep1-B1. The codominant marker dep19, which can accurately discriminate the allelic variants of TaDep1-B1c from those of TaDep1-B1a, TaDep1-B1b,and TaDep1-B1d, was developed from a 30 bp InDel of different allelic variants at the fifth exon of TaDep1-B1. No significant association was found among the yield associated traits such as thousand-kernel weight, plant height, panicle length, spikelet number and spikelet spacing in 406 cultivars, indicating that these genes have no significant effect on the yield-related traits in current Chinese wheat cultivars.

Key words: Common wheat (Triticum aestivum L.), Dense and erect panicle1 (Dep1) gene, Allelic variation, Allele-specific markers

[1]He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Zhuang Q-S(庄巧生). Progress of wheat breeding in China and the future perspective. Acta Agron Sin (作物学报), 2011, 37(2): 202–215 (in Chinese with English abstract)



[2]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10



[3]Wang R-X(王瑞霞). QTL Analysis of Grain Filling Rate and Related Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)



[4]Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688–698



[5]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178



[6]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753–766



[7]Xiao Y-G(肖永贵). Genetic Improvement of Yield Traits in Shandong Wheat Cultivars and Molecular Dissection of Core Parent Zhou 8425B. PhD. Dissertation of Northwest A&F University, 2011 (in Chinese with English abstract)



[8]Zhuang Q-S(庄巧生). Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003. p 502 (in Chinese)



[9]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi? D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington P A, Aragués R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865–880



[10]Kumar N, Kulwal P L, Gaur A, Tyagi A K, Khurana J P, Khurana P, Balyan H S, Gupta P K. QTL analysis for grain weight in common wheat. Euphytica, 2006, 151: 135–144



[11]Sun X Y, Wu K, Zhao Y, Kong F M, Han G Z, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615–624



[12]Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupta V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet, 2010, 51: 421–429



[13]Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49–61



[14]Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223



[15]Ma D Y, Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2012, 29: 43–52



[16]Kong F N, Wang J Y, Zou J C, Shi L X, Jin D M, Xu Z J, Wang B. Molecular tagging and mapping of the erect panicle gene in rice. Mol Breed, 2007, 19: 297–304



[17]Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet, 2007, 115: 1093–1100



[18]Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315–324



[19]Wang J Y, Nakazaki T, Chen S Q, Chen W F, Saito H, Tsukiyama T, Okumoto Y, Xu Z J, Tanisaka T. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2009, 119: 85–91



[20]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G G, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494–497



[21]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171



[22]Yi X H, Zhang Z J, Zeng S Y, Tian C Y, Peng J C, Li M, Lu Y, Meng Q C, Gu M H, Yan C J. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). J Genet Genomics, 2011, 38: 217–223



[23]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640–1643



[24]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47–58



[25]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221



[26]He X Y, He Z H, Ma W, Appels R, Xia X C. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed, 2009, 23: 553–563



[27]Gautier M F, Cosson P, Guirao A, Alary R, Joudrier P. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci, 2000, 153: 81–91



[28]Lillemo M, Simeone M C, Morris C F. Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related diploid taxa. Euphytica, 2002, 126: 321–331



[29]Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell, 2005, 17: 1033–1045

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[3] WANG Juan,DONG Cheng-Guang,LIU Li,KONG Xian-Hui,WANG Xu-Wen,YU Yu. Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2017, 43(07): 954-966.
[4] DONG Xue,LIU Meng,ZHAO Xian-Lin,FENG Yu-Mei,YANG Yan. Isolation and Characterization of LMW-GS Glu-A3 in Common Wheat Related Species [J]. Acta Agron Sin, 2017, 43(06): 829-838.
[5] XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707.
[6] KOU Cheng,GAO Xin,LI Li-Qun,LI Yang,WANG Zhong-Hua,LI Xue-Jun*. Composition and Selection of TaGW2-6A Alleles for Wheat Kernel Weight [J]. Acta Agron Sin, 2015, 41(11): 1640-1647.
[7] ZHAO De-Hui,YAN Jun,HUANG Yu-Lian,XIA Xian-Chun,ZHANG Yan,TIAN Yu-Bing,HE Zhong-Hu,ZHANG Yong. Effect of 1BL/1RS Translocation on Gluten Protein Fraction Quantities and Dough Rheological Properties [J]. Acta Agron Sin, 2015, 41(11): 1648-1656.
[8] LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan. Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species [J]. Acta Agron Sin, 2015, 41(01): 31-41.
[9] HU Wen-Ming,KAN Hai-Hua,WANG Wei,XU Chen-Wu. Statistical Genetics Approach for Functional Difference Identification of Allelic Variations and Its Application [J]. Acta Agron Sin, 2014, 40(01): 72-79.
[10] HUANG Bing-Yan,ZHANG Xin-You,MIAO Li-Juan,GAO Wei,HAN Suo-Yi,DONG Wen-Zhao,TANG Feng-Shou,LIU Zhi-Yong. Allelic Expression Variation of ahFAD2A and its Relationship with Oleic Acid Accumulation in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1752-1759.
[11] LI Wei-Yu,ZHANG Bin,ZHANG Jia-Nan,CHANG Xiao-Ping,LI Run-Zhi,JING Rui-Lian. Exploring Elite Alleles for Chlorophyll Content of Flag Leaf in Natural Population of Wheat by Association Analysis [J]. Acta Agron Sin, 2012, 38(06): 962-970.
[12] WU Yong-Sheng,LI Xin-Hai,HAO Zhuan-Fang,ZHANG Shi-Huang,XIE Chuan-Xiao. Genomic DNA Sequence,Gene Structure,Conserved Domains,and Natural Alleles of Gln1-4 Gene in Maize [J]. Acta Agron Sin, 2009, 35(6): 983-991.
[13] YUE Xiang-Wen;ZHAO Fa-Mao;LI Tian-Jiao;WANG Xian-Ze. Relationship of Isozyme Genotypes of AGP with Activity of AGP and Starch Content in Wheat Grain [J]. Acta Agron Sin, 2008, 34(09): 1644-1649.
[14] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars [J]. Acta Agron Sin, 2008, 34(07): 1109-1113.
[15] LI Gen-Ying;XIA Xian-Chun;HE Zhong-Hu;SUN Qi-Xin;HUANG Cheng-Yan. Distribution of Grain Hardness and Puroindoline Alleles in Landraces, Historical and Current Wheats in Shandong Province [J]. Acta Agron Sin, 2007, 33(08): 1372-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!