Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (04): 642-648.doi: 10.3724/SP.J.1006.2013.00642

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis of Common Wheat Cultivar Taikong 6 for Resistance to Heterodera avenae Zhengzhou Population

DAI Jun-Li1,CUI Lei1,2,LIU Ke1,2,ZONG Ying-Ying1,YUAN Hong-Xia1,XING Xiao-Ping1,LI Hong-Jie2,*,LI Hong-Lian1,*   

  1. 1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2012-10-19 Revised:2012-12-16 Online:2013-04-12 Published:2013-01-28
  • Contact: 李洪连, E-mail: honglianli@sina.com; 李洪杰, E-mail: hongjie@caas.net.cn

Abstract:

Taikong 6 is a common wheat (Triticum aestivum L.) cultivar with high-yield and good agronomic performance bred by Henan Academy of Agricultural Sciences with Satellite-loaded mutation breeding. This cultivar was shown to be resistant to H. avenaee Zhengzhou population in the conditions of repeated inoculation and field tests. In this study, Taikong 6 was crossed with the susceptible cultivarsYumai 47 to produce F2 segregating population. Reactions of the F2 progeny to H. avenaee Zhengzhou population was investigated in the field and inoculation tests. The results of genetic analysis showed that the cyst number of F2 population was the quantitative character with a continuous and skewed distribution, indicating that there are major genes in Taikong 6. The method of joint segregation analysis of single generation of major gene plus polygene mixed inheritance model was used to analyze the inheritance of resistance to H. avenaee Zhengzhou population in Taikong 6, showing that the genetic model B-2 was the most fitted genetic model for the resistance for the cross of Yumai 47 × Taikong 6 in the conditions of inoculation and field tests. This indicates that the resistance to cereal cyst nematode in Taikong 6 is controlled by two major genes with additive-dominant effects plus polygene effect. The major gene heritability of resistance for the cross of Yumai 47 × Taikong 6 to H. avenaee Zhengzhou population in the conditions of inoculation and field tests was 73.54% and 86.90%, indicating the two major genes with the dominant role to resistance of Taikong 6 to H. avenaee Zhengzhou population.

Key words: Taikong 6, Cereal cyst nematode, Heterodera avenae Zhengzhou population, Resistance, Genetic analysis

[1]Nicol J M, Elekçio?lu ? H, Bolat N, Rivoal R. The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Commun Agric Appl Biol Sci, 2007, 72: 677–686



[2]Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 3–10



[3]Wang M-Z(王明祖), Peng D-L(彭德良), Wu X-Q (武学勤). Studies on a cyst nematode wheat disease. J Huazhong Agric Univ (华中农业大学学报), 1991, 10(4): 352–356 (in Chinese with English abstract)



[4]Chen P-S(陈品三), Wang M-Z(王明祖), Peng D-L(彭德良). A study of cereal cyst nematode (Heterodera avenae Wollenweber) in China. Acta Phytopathol Sin (植物病理学报), 1992, 22(4): 339–343 (in Chinese with English abstract)



[5]Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 29–34



[6]Riley I T, Hou S Y, Chen S L. Crop rotational and spatial determinants of variation in Heterodera avenae (cereal cyst nematode) population density at village scale in spring cereals at high altitude on the Tibetan Plateau, Qinghai, China. Aust Plant Pathol, 2010, 39: 424–430



[7]Li H-X(李惠霞), Liu Y-E(柳永娥), Wei Z(魏庄), Li M-Q(李敏全). The detection of Heterodera avenae from the cereal field in autonomous region of Tibet and Xinjiang. In: Liao J-L(廖金铃), Peng D-L(彭德良), Duan Y-X(段玉玺), Jian H(简恒), Li H-M(李红梅), eds. Nematology Research in China (中国线虫学研究), Vol. 4. Beijing: China Agricultural Science and Technology Press, 2012. pp 164–165 (in Chinese)



[8]Peng D-L(彭德良), Huang W-K(黄文坤), Sun J-H(孙建华), Liu C-J(刘崇俊), Zhang H-M(张辉民). First report of cereal cyst nematode (Heterodera avenae) in Tianjin, China. In: Liao J-L(廖金铃), Peng D-L(彭德良), Duan Y-X(段玉玺), Jian H(简恒), Li H-M(李红梅), eds. Nematology Research in China (中国线虫学研究), Vol. 4. Beijing: China Agricultural Science and Technology Press, 2012. pp 162–163 (in Chinese)



[9]Nicol J, Rivoal R, Taylor S, Zaharieva M. Global importance of cyst (Heterodera spp.) and lesion nematodes (Pratylenchus spp.) on cereals: distribution, yield loss, use of host resistance and integration of molecular tools. Nematol Monogr Perspect, 2003, 2: 1–19



[10]Zheng J-W(郑经武). Wheat cyst nematode disease and control in Australia. World Agric (世界农业), 1995, (3): 36–37 (in Chinese)



[11]Zheng J-W(郑经武), Lin M-S(林茂松), Chen H-R(程瑚瑞), Fang Z-D(方中达). Resistance of cereal cultivars to cereal cyst, Heterodera avenae. Acta Phytophyl Sin (植物保护学报), 1999, 26(3): 250–254 (in Chinese with English abstract)



[12]Wang Z-Y(王振跃), Gao S-F(高书峰), Li H-L(李洪连), Sha G-L(沙广乐), Yu M-Q(余懋群). Resistance of different wheat cultivars to cereal cyst. J Henan Agric Sci (河南农业科学), 2006, (5): 50–52 (in Chinese)



[13]Yuan H-X(袁虹霞), Li H-L(李洪连), Xing X-P(邢小萍), Sun J-W(孙君伟), Nian G-L(年高磊), Hou X-S(侯兴松). Resistance of wheat cultivars in Huanghuai area to Heterodera avenae Xingyang population. In: Peng Y-L(彭友良), Wang Z-H(王宗华), eds. Proceedings of the 2010 Annual Meeting of Chinese Society for Plant Pathology (中国植物病理学会2010年学术年会论文集). Beijing: China Agricultural Science and Technology Press, 2010. pp 552–555 (in Chinese)



[14]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources of wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, 53: 1209–1217



[15]Cui L(崔磊), Gao X(高秀), Wang X-M(王晓鸣), Jian H(简恒), Tang W-H(唐文华), Li H-L(李洪连), Li H-J(李洪杰). Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi. Acta Agron Sin (作物学报), 2012, 38(6): 1009–1017 (in Chinese with English abstract)



[16]Ou S-Q(欧师琪), Peng D-L(彭德良), Li Y(李玉), Wang YJ(王永江). Restriction fragment length polymorphism and sequences analysis of rDNA-ITS region of cereal cyst nematode (Heterodera avenae) on wheat from Zhengzhou. Acta Phytopathol Sin (植物病理学报), 2008, 38(4): 407–413 (in Chinese with English abstract)



[17]Yuan H X, Sun J W, Yang W X, Xing X P, Wang Z Y, Riley I, Li H L. New pathotypes of Heterodera avenae (cereal cyst nematode) from winter wheat in Zhengzhou, Henan, China. Aust Plant Pathol, 2010, 39: 107–111



[18]Fang Z-D(方中达). Research Methods of Plant Disease (植病研究法). Beijing: Agriculture Press, 1998. pp 310–311



[19]Yuan H-X(袁虹霞), Zhang F-X(张福霞), Zhang J-J(张佳佳), Hou X-S(侯兴松), Li H-J(李洪杰), Li H-L(李洪连). Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan province, China. Acta Agron Sin (作物学报), 2011, 37(11): 1956−1966 (in Chinese with English abstract)



[20]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic system of plant quantitative trait (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 145–156 (in Chinese)



[21]Cotten J, Hayes J D. Genetic resistance to the cereal cyst nematode (Heterodera avenae). Heredity, 1969, 24: 593–600



[22]O’Brien P C, Sparrow D H B, Fisher J M. Inheritance of resistance to Heterodera avenae in barley. Nematologica, 1979, 25: 348–352



[23]Clamot T G, Rivoal R. Genetic resistance to cereal cyst nematode Heterodera Avenae Woll. in wild oat Avena sterilis I. 376. Euphytica, 1984, 33: 27–32

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[9] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[10] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[11] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[12] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[13] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[14] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[15] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!