Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (06): 1013-1020.doi: 10.3724/SP.J.1006.2013.01013
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
IN Yan-Ling1,2,YIN Liang3,ZHAO Jin-Feng2,SUN Wei3,ZHAO Qing-Lei3,YUAN Shou-Jiang3,ZHU Wen-Yin3,GUO Bao-Tai1,*,LI Xue-Yong2,*
[1]Azpiroz R, Wu Y, LoCascio J C, Feldmann K A. An Arabidopsis brassinosteriod-dependent mutant is blocked in cell elongation. Plant Cell, 1998, 10: 219–230[2]Cheon J, Park S Y, Schulz B, Choe S. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol, 2010, 10: 270[3]Yamamoto R, Demura T, Fukuda H. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol, 1997, 38: 980–983[4]Fukuda H. Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol, 2004, 5: 379–391[5]Neff M M, Nguyen S M, Malancharuvil E J, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J. BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA, 1999, 96: 15316–15323[6]song L, Zhou X Y, Li L, Xue L, Yang X, Xue H W. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant, 2009, 2: 755–772[7]wada K, Marumo S, Ikekawa N, Morisaki M, Mori K. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol, 1981, 22: 323–325[8]wada K, Marumo S, Abe H, Morishita T, Nakamura K, Uchiyama M, Mori K. A rice lamina inclination test—a micro-quantitative bioassay for brassinosteroids. Agric Biol Chem, 1984, 48: 719–726[9]sasse J M, Smith R, Hudson I. Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Proc Plant Growth Regul Soc Am, 1995, 22: 136–141[10]Steber G M, McCourt P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol, 2001, 125: 763–769[11]Kim T W, Michniewicz M M, Bergmann D C, Wang Z Y. Brassinosteroid inhibits stomatal development by releasing GSK3-mediated inhibition of a MAP kinase pathway. Nature, 2012, 482: 419–422[12]Fujii S, Hirai K, Saka H. Growth-regulating action of brassinolide in rice plants. In: Cutler H G, Yokota T, Adam G, eds. Brassinosteroids: Chemistry, Bioactivity, and Application. Washington, DC: American Chemical Society, 1991. pp 306–311[13]Iwahori S, Tominaga S, Higuchi S. Retardation of abscission of citrus leaf and fruitlet explants by brassinolide. Plant Growth Regul, 1990, 9: 119–125[14]Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J, 2003, 33: 887–898[15]Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Uequchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105–109[16]Sumiyo T, Motoyuki A, Shozo F, Suguru T, Shigeo Y, Masahiro Y, Atsushi Y, Hidemi K, Makoto M, Yukiko F, Hisaharu K, Yukimoto I. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776–790[17]Bishop G J. Plants steroid hormone, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol, 2001, 42: 114–120[18]Zhi H, Miyako U T, Kazuto U, Sakurako U, Shozo F, Suguru T, Shigeo Y, Motoyuki A, Hidemi K, Makoto M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900–2910[19]Zhi H, Miyako U T, Sae S S, Yoshiaki I, Shozo F, Yukihisa S, Suguru T, Masakazu A, Shigeo Y, Yoshihisa W, Sakurako U, Hidemi K, Motoyuki A, Makoto M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32: 495–508[20]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1605[21]Iwata N, Satoh H, Omura T. The relationships between chromosomes identified cytologically and linkage groups. Rice Genet Newsl, 1984, 1: 128–132[22]Zhi H, Miyako U T, Shozo F, Suguru T, Shigeo Y, Yasuko H, Motoyuki A, Hidemi K, Makoto M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243–2254[23]Wang G-L(王关林), Fang H-Y(方宏筠). Plant Gene Engineering (植物基因工程), 2nd edn. Beijing: Science Press, 2002. pp 742–744(in Chinese)[24]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[25]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp, 1977, 16: 1–18[26]Oki K. Study of novel d1 alleles, defective mutants of the alpha subunit of heterotrimeric G-protein in rice. Genes Genet Syst, 2009, 84: 35-42[27]Yoichi M, Tomoaki S, Yoshiaki I, Masakazu A, Hidemi K, Motoyuki A, Makoto M. Morphological alteration caused by brassinosteroid insensitivity increases the bomass and grain production of rice. Plant Physiol, 2006, 141: 924–931 |
[1] | ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[5] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[6] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[7] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[8] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[9] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[10] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[11] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[12] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[13] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[14] | ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168. |
[15] | HUANG Wei, GAO Guo-Ying, WU Jin-Feng, LIU Li-Li, ZHANG Da-Wei, ZHOU Ding-Gang, CHENG Hong-Tao, ZHANG Kai-Xuan, ZHOU Mei-Liang, LI Mei, YAN Ming-Li. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea [J]. Acta Agronomica Sinica, 2022, 48(5): 1169-1180. |
|