Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 86-92.doi: 10.3724/SP.J.1006.2014.00086
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Jiang1,**,MA Yan-Bin2,**,SUN Quan-Xi1,3,WU Xia2,LI Xue-Ying1,SUN Mei-Hong1,LI Yan-E2,LI Xin-Zheng1,*,QI Bao-Xiu1,*
[1]Abbadi A, Domergue F, Bauer J, Napier J A, Welti R, Zahringer U, Cirpus P, Heinz E. Biosynthesis of very long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell, 2004, 16: 2734–2748[2]Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294: 1871–1875[3]Simopoulos A P. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr, 2002, 21: 495–505[4]Uauy R, Hoffman D R, Peirano P, Birch D G, Birch E E. Essential fatty acids in visual and brain development. Lipids, 2001, 36: 885–895[5]Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Lazarus C M. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol, 2004, 22: 739–745[6]Lu C F, Napier J A, Clemente T E, Cahoon E B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Plant Biol, 2011, 22: 252–259 [7]Venegas-Calerón M, Sayanova O, Napier J A. An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res, 2010, 49: 108–119[8]Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat biotechnol, 2005, 23: 1013–1017[9]Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem, 2008, 283: 22352–22362[10]杨艳, 王贤磊, 李冠. 六种新疆陆地棉棉籽脂肪酸成分分析. 生物技术, 2009, 19(4): 54–56Yang Y, Wang X L, Li G. Analysison fatty acid composition of six species of upland cotton. Biotechnology, 2009, 19(4): 54–56 (in Chinese with English abstract)[11]Qi B X, Beaudoin F, Fraser T, Stobart A K, Napier J A, Lazarus C M. Identification of a cDNA encoding a novel C18-Delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett, 2002, 510: 159–165[12]Wallis J G, Browse J. The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys, 1999, 365: 307–316[13]Michaelson L V, Lazarus C M, Griffiths G, Napier J A, Stobart A K. Isolation of a Delta5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem, 1998, 273: 19055–19059[14]Yadav N S, Wierzbicki A, Aegerter M, Caster C S, Perez-Grau L, Kinney A J, Hitz W D, Booth J R, Schweiger B, Stecca K L. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol, 1993, 103: 467–476[15]Sun Q X, Liu J, Li Y X, Zhang Q, Shan S H, Li X Z, Qi B X. Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant. Plant Mol Biol, 2013, DOI:10.1007/s11103-013-0096-2[16]秦永华, 乔志新, 刘进元. 转基因技术在棉花育种上的应用. 棉花学报, 2007, 19: 482–488Qin Y H, Qiao Z X, Liu J Y. Application of genetic transformation in cotton breeding. Cotton sci, 2007, 19: 482–488 (in Chinese with English abstract)[17]Halpin C. Gene stacking in transgenic plants--the challenge for 21st century plant biotechnology. Plant Biotechnol, 2005, 3: 141–155[18]Sun Q, Liu J, Zhang Q, Qing X, Dobson G, Li X Z, Qi B X. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from Phytophthora infestans. Appl Microbiol Biotechnol, 2012, DOI: 10.1007/s00253-012-4613-z[19]Cheng B F, Wu G H, Vrinten P, Falk K, Bauer J, Qiu X. Towards the production of high levels of eicosapentaenoic acid in transgenic in plants: the effects of different host species, genes and promoters. Transgenic Res, 2010, 19: 221–229[20]Lu C F, Napier J A, Clemente T E, Cahoon E B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Plant Biol, 2011 22: 252–259 [21]Domergue F, Abbadi A, Heinz E. Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci, 2005, 10: 112–116 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[10] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[11] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[12] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[13] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[14] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[15] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
|