Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 745-750.doi: 10.3724/SP.J.1006.2014.00745

• RESEARCH NOTES • Previous Articles     Next Articles

Overexpression of BnMAPK1 Enhances Resistance to Sclerotinia sclerotiorum in Brassica napus

WANG Shu-Wen,LU Jun-Xing,WAN Hua-Fang,WENG Chang-Mei,WANG Zhen,LI Jia-Na,LU KunLIANG Ying*   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Rapeseed Engineering & Technology Research Center / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
  • Received:2013-07-03 Revised:2014-01-12 Online:2014-04-12 Published:2014-02-14
  • Contact: 梁颖, E-mail: yliang@swu.edu.cn


Plant MAPKs (mitogen-activated protein kinases) play an important role in defense to biotic and abiotic stresses. In our previous studies, BnMAPK1 was cloned in Brassica napus and transgenic oilseed rape plants overexpressing BnMAPK1 were obtained. In this study, B. napus ZY821DH line was used as control and the corresponding transgenic plants overexpressing BnMAPK1 were used as experimental materials. The resistance to S. sclerotiorum and oxalic acid content were testedby using detached leaves inoculated with the pathogen. The dynamic changes of the relative expression of four pathogenesis-related genes, OXO, Cu/ZnSOD, PR2, and PR3were detected in the leaves inoculated with the pathogen. The results showed that the overexpression of BnMAPK1 significantly inhibited the invasion of the pathogen, controlled the accumulation of oxalic acid in the inoculated leaves, and maybe finally relieved the negative regulation of OXO expression caused by the pathogen and up-regulated the expression of the other three genes, Cu/Zn SOD, PR2, and PR3. The results indicated that overexpression of BnMAPK1 can effectively improve the resistance to S. sclerotiorum in oilseed rape.

Key words: BnMAPK1, Brassica napus, Sclerotinia rot, Resistance, Pathogenesis-related genes

[1]Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217–226

[2]朱斌, 梁颖. 植物MAPK C族基因的研究进展. 生物技术通报, 2012, (11): 27–28

Zhu B, Liang Y. Progress of study on plant’s MAPK genes of group C. Biotech Bull, 2012, (11): 27–28 (in Chinese with English abstract)

[3]Rohila J S, Yang Y N. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49: 751–759

[4]谷令坤. 玉米根系ZmOSMAPK1基因分离、功能鉴定及信号转导作用. 山东农业大学博士论文, 2006

Gu L K. Isolation and Function Identification of a Novel Mitogen-Activated Protein Kinase Gene, ZmOSMAPK1, in Maize Roots and Role in Plant Signal Transduction. PhD Dissertation of Shandong Agricultural University, 2006 (in Chinese with English abstract)

[5]李方球, 官春云. 油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展. 作物研究, 2001, 15(3): 85–92

Li F Q, Guan C Y. Research progress of identification, mechanism and genetic breeding of Brassica napus against Sclerotinia sclerotiorum. Crop Res, 2001, 15(3): 85–92 (in Chinese with English abstract)

[6]万华方, 刘瑶, 梅家琴, 丁一娟, 梁颖, 曲存民, 卢坤, 李加纳, 钱伟. 人工合成高抗菌核病甘蓝型油菜几种关键酶编码基因的表达与其抗性的关系. 中国农业科学, 2012, 45: 4543–4551

Wan H F, Liu Y, Mei J Q, Ding Y J, Liang Y, Qu C M, Lu K, Li J N, Qian W. Relationship between the expression of genes encoding resistance-related enzymes and the resistance to Sclerotinia sclerotiorumin resynthesized Brassica napus with high level of resistance. Sci Agric Sin, 2012, 45: 4543–4551 (in Chinese with English abstract)

[7]Mei J Q, Qian L W, Disi J O, Yang X R, Li Q F, Li J N, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotina sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011, 177: 393–399

[8]俞乐, 彭新湘, 杨崇, 刘拥海, 范燕萍. 反相高效液相色谱法测定植物组织及根分泌物中草酸. 分析化学研究简报, 2002, 9: 1119–1122

Yu L, Peng X X, Yang C, Liu Y H, Fan Y P. Determination of oxalic acid in plant tissue and root exudate by reversed phase high performance liquid chromatography. Chin J Anal Chem, 2002, 9: 1119–1122 (in Chinese with English abstract)

[9]Shivani Y A K, Srivastava D P, Singh D K A. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein. World J Microbiol Biotechnol, 2012, 28: 3197–3206

[10]Andreas W, Irmgard Z S, Simone T, Andreas K. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum. Plant Pathol, 2008, 120: 317–330

[11]Rai J N, Dhawan S. Studies on purification and identification of toxic metabolite produced by Sclerotinia sclerotiorum causing white rot disease of crucifers. Ind Phytopathil, 1976, 29: 407–411

[12]刘胜毅. 草酸法筛选油菜抗菌核病材料的效果及其影响因素. 植物保护学报, 1998, 25: 56–59

Liu S Y. Oxalic screening of rape resistance to the effect of the material and its influencing factors. Acta Phytophyl Sin, 1998, 25: 56–59 (in Chinese with English abstract)

[13]吴纯仁, 刘后利. 油菜菌核病的致病机制: Ⅲ. 罹病组织内草酸毒素积累和分布的初步分析. 植物病理学报, 1991, 21: 135–140

Wu C R, Liu H L. Pathogenesis of Sclerotinia sclerotiorum: III. The oxalate accumulation of toxins in diseased tissues and preliminary analysis of the distribution. Acta Phytopathol Sin, 1991, 21: 135–140 (in Chinese with English abstract)

[14]赵丹丹, 臧新, 田保明, 顾建伟. 菌核菌及油菜菌核病相关研究进展. 河南农业科学, 2010, (2): 120–122

Zhao D D, Zang X, Tian B M, Gu J W. Research progress of Sclerotium fungus and Sclerotinia sclerotiorum. Henan Agric Sin, 2010, (2): 120–122 (in Chinese with English abstract)

[15]Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol, 1995, 108: 1673–1678

[16]Alvarez M E, Penndll R I, Meijer P J. Reactive oxygen intermediates mediate a systemic signal networks in the establishment of plant immunity. Cell, 1998, 92: 773–784

[17]Thompson C, Dunwell J M, Johnstone C E, Lay V, Ray J, Schmitt M, Watson H, Nisbet G. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85: 169–172

[18]Dong X B, Ji R Q, Guo X L, Foster S J, Chen H, Dong C H, Liu Y Y, Hu Q, Liu S Y. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 2008, 288: 331–340

[19]Chipps T J, Gilmore B, Myers J R, Stotz H U. Relationship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white mold susceptibility in Phaseolus coccineus. Phytopathology, 2005, 95: 292–299

[20]Donaldson P A, Anderson T, Lane B G, Davidson A L, Simmonds D H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant Pathol, 2001, 59: 297–307

[21]Livingstone D M, Hampton J L, Phipps P M, Grabau E A. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol, 2005, 137: 1354–1362

[22]Liang Y, Srivastava S, Rahaman M H, Strelkov S E, Kav N N. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem, 2008, 56: 1963–1976

[23]齐绍武, 官春云, 刘春林. 甘蓝型油菜品系一些酶的活性与抗菌核病的关系. 作物学报, 2004, 30: 270–273

Qi S W, Guan C Y, Liu C L. Relationship between some enzyme activity and resistance to Sclerotinia sclerotiorum of rapeseed cultivars. Acta Agron Sin, 2004, 30: 270–273 (in Chinese with English abstract)

[24]王雅平, 刘伊强, 施磊, 潘乃穟, 陈章良. 小麦对赤霉病抗性不同品种的SOD活性. 植物生理学报, 1993, 19: 353–358

Wang Y P, Liu Y Q, Shi L, Pan N S, Chen Z L. SOD activity of wheat varieties with different resistance to scab. Acta Phytophysiol Sin, 1993, 19: 353–358 (in Chinese with English abstract)

[25]云兴福, 李荣禧. 用抗病体子叶SOD同功酶蛋白质诱导黄瓜对霜霉病抗性的研究. 植物病理学报, 1997, 27: 221–224

Yun X F, Li R X. Studies of induced resistance to downy mildew of cucumber with SOD isozyme protein in cotyledons. Acta Phytopathol Sin, 1997, 27: 221–224 (in Chinese with English abstract)

[26]牛立元, 王鸿升, 石明旺. 小麦叶片SOD、POD活性与白粉病抗性关系. 河南职业技术师范学院学报, 2004, 32(4): 5–8

Niu L Y, Wang H S, Shi M W. Changes of SOD and POD activities in wheat leaves infected by wheat powdery mildew and their relations to resistance. J Henan Voction-Technical Coll, 2004, 32(4): 5–8 (in Chinese with English abstract)

[27]杨鸯鸯, 李云, 丁勇, 徐春雷, 张成桂, 刘英, 甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达. 作物学报, 2009, 35: 71–78

Yang Y Y, Li Y, Ding Y, Xu C L, Zhang C G, Liu Y, Gan L. Cloning of Cu/Zn-superoxide dismutase of Brassica napus and its induced expression by Sclerotinia sclerotiorum. Acta Agron Sin, 2009, 35: 71–78 (in Chinese with English abstract)

[28]Egea C, Alcazar M D, Candeland M E. β-1,3-glucanase and chitinase as pathogenesis-related proteins in the defense reaction of two Capsicum annuum cultivars infected with cucumber mosaic virus. Biologia Plant, 1996, 38: 437–443

[29]蔡新忠. 植物病程相关蛋白. 植物生理学通讯, 1995, 31: 129–136

Cai X Z. Plant pathogenesis-related proteins. Plant Physiol, 1995, 31: 129–136 (in Chinese with English abstract)

[30]蓝海燕. 表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究. 遗传学报, 2000, 27: 70–77

Lan H Y. The study of the anti-fungal disease about the expression of β-1,3-glucanase and chitinase genes in transgenic tobacco. Acta Genet Sin, 2000, 27: 70–77 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Full text



No Suggested Reading articles found!