Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (11): 1973-1979.doi: 10.3724/SP.J.1006.2014.01973


Transformation of BADH Gene into Maize and Salt Tolerence of Transgenic Plant

WANG Xiao-Li1,2,DU Jian-Zhong1,HAO Yao-Shan1,ZHANG Li-Jun1,ZHAO Xin-Mei1,2,WANG Yi-Xue1,SUN Yi1,2,*   

  1. 1 Biotechnology Research Center, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; 2 Biological Engineering Institute, Shanxi University, Taiyuan 030006, China
  • Received:2013-10-14 Revised:2014-07-16 Online:2014-11-12 Published:2014-07-25
  • Contact: 孙毅, E-mail: sunyi692003@163.com


In order to obtain transgenic maize plants tolerant to salt stress, maize inbred Zheng 58 was transformed with BADH gene by pollen-mediated method. The results of Km-resistant screening, PCR detection and Southern blot analysis proved that BADH gene was introduced into maize plants and integrated into the maize genome. Effects of various concentrations of NaCl solution on growth of T2 transgenic and non-transgenic maize plants were investigatedThe results indicated that transgenic maize seedlings had an improved resistance to salt, and their growth performance was superior to that of non-transgenic maize seedlings. On the basis of the growth status of non-transgenic plants, 250 mmol L-1 of NaCl solution was used to screen transgenic plants. An analysis on morphological and physiological indexes under the stress of 250 mmol L-1 NaCl showed that compared with non-transgenic plants, the seedling height of transgenic plants was increased by 10.94%–25.7%, fresh weight was increased by 8.62%18.2%, dry weight was increased by 9%18.18%, relative conductivity was decreased by 37.21%58.14%, chlorophyll content was increased by 15.89%90.65%, superoxide dismutase (SOD) activity was increased by 64.92%148.29%, and MDA content was decreased by 26.97%48.05%. In conclusion, introducing betaine aldehyde dehydrogenase (BADH) gene enhances salt tolerance in maize plants. The first report on introducing BADH gene into the elite maize inbred proved that pollen-mediated transformation approach is an economical, effective and practical plant transformation method without genotype dependence.

Key words: Maize, BADH gene, Genetic transformation, Salt tolerance, Morphological index, Physiology index

[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560

[2]王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷. 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响. 作物学报, 2011, 37: 2085−2093

Wang C J, Li Z Q, Wang X L, Jiang C D, Tang Y D, Gu W B, Shi L. Effects of salt stress on photosystem II activity in sweet sorghum seedlings grown in pots outdoors. Acta Agron Sin, 2011, 37: 2085−2093 (in Chinese with English abstract)

[3]Agami R A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot, 2013, 88: 171–177

[4]Khodarahmpour Z, Ifar M, Motamedi M. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol, 2012, 11: 298-304

[5]Bao Y X, Zhao R, Li F F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379–388

[6]Zhou S F, Chen X Y, Zhang X G, Li Y X. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett, 2008, 30: 369–376

[7]Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141–146

[8]Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep, 2008, 27:  585–592

[9]Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155–162

[10]张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. 转BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析. 作物学报, 2011, 37: 397–404

Zhang Y M, Zhang H M, Xiang J Y, Guo X L, Liu Z H, Li G L, Chen S Y. Analysis of T-DNA flanking sequences and event-specific detection of transgenic alfalfa with gene BADH. Acta Agron Sin, 2011, 37: 397-404 (in Chinese with English abstract)

[11]郭北海, 张艳敏, 李洪杰, 杜立群, 李银心, 张劲松, 陈受宜, 朱至清. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000, 42: 279−283

Guo B H, Zhang Y M, Li H J, Du L Q, Li Y X, Zhang J S, Chen S Y, Zhu Z Q. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin, 2000, 42: 279−283 (in Chinese with English abstract)

[12]Liu Z H, Zhang H M, Li G L, Guo X L, Chen S Y, Liu G B, Zhang Y M. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178: 363–372

[13]韩德俊, 陈耀锋, 李春莲, 郭东伟, 李振岐. 转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究. 干旱地区农业研究, 2007, 25(4): 6−11

Han D J, Chen Y F, Li C L, Guo D W, Li Z Q. Agrobacterium-mediated transformation with a gene encoding for betaine-aldehyde dehydrogenase (BADH) in Brassica napus. Agric Res Arid Areas, 2007, 25(4): 6−11 (in Chinese with English abstract)

[14]张宁, 司怀军, 栗亮, 杨涛, 张春凤, 王蒂. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性. 作物学报, 2009, 35: 1146−1150

Zhang N, Si H J, Li L, Yang T, Zhang C F, Wang D. Drought and salinity tolerance in transgenic potato expressing the betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2009, 35: 1146−1150 (in Chinese with English abstract)

[15]罗晓丽, 肖娟丽, 王志安, 张安红, 田颖川, 吴家和. 菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析. 生物工程学报, 2008, 24: 1464–1469

Luo X L, Xiao J L, Wang Z A, Zhang A H, Tian Y C, Wu J H. Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L. Chin J Biotech, 2008, 24: 1464–1469(in Chinese with English abstract)

[16]Wang J X, Sun Y, Cui G M, Hu J J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot Sin, 2001, 43: 275–279 (in English with Chinese abstract)

[17]付光明, 苏乔, 吴畏, 赵洪梅, 安利佳. 转BADH基因玉米的获得及其耐盐性. 辽宁师范大学学报(自然科学版), 2006, 29: 344–347

Fu G M, Su Q, Wu W, Zhao H M, An J L. Transconduct BADH gene into maize and the salt tolerance of transgenic maize. J Liaoning Norm Univ (Nat Sci Edn), 2006, 29: 344–347 (in Chinese with English abstract)

[18]任小燕, 杜建中, 孙毅. 转AhCMO基因玉米后代的获得及耐盐性鉴定. 分子植物育种, 2013, 11: 332–338

Ren X Y, Du J Z, Sun Y. Recovery and salt-tolerance evaluation of maize transgenic progeny with AhCMO gene. Mol Plant Breed, 2013, 11: 332–338 (in Chinese with English abstract)

[19]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266–273

[20]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sun?ower leaves. Sci Hortic, 2004, 103: 93–99

[21]Meloni D A, Oliva M A, Martinez C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot, 2003, 49: 69–76

[22]王彦玲, 卫文星, 铁双贵, 王延召, 朱卫红, 岳润清, 齐建双. 郑58和掖478玉米自交系基因组差异性分析. 玉米科学, 2010, 18(3): 57–60

Wang Y L, Wei W X, Tie S G, Wang Y Z, Zhu W H, Yue R Q, Qi J S. Analysis of genomes difference between Zheng 58 and Ye 478. Maize Sci, 2010, 18(3): 57–60

[23]李会勇, 王利锋, 唐保军, 程泽强, 王振华, 铁双贵. 玉米单交种郑单958遗传结构及杂种优势初步研究. 玉米科学, 2009, 17(1): 28–31

Li H Y, Wang L F, Tang B J, Cheng Z Q, Wang Z H, Tie S G. Research on the genetic structure and heterosis of Zhengdan 958. Maize Sci, 2009, 17(1): 28–31

[24]杜建中, 孙毅, 王景雪, 郝曜山, 程林梅. 转基因玉米中目的基因的遗传表达及其抗病性研究. 西北植物学报, 2007, 27: 1720–1727

Du J Z, Sun Y, Wang J X, Hao Y S, Cheng L M. Stable inheritance and expression of chitinase gene in the transgenic maize plants and their head smut-resistant activity. Acta Bot Boreali-Occident Sin, 2007, 27: 1720–1727 (in Chinese with English abstract)

[25]杜建中, 孙毅, 王景雪, 郝曜山, 王亦学, 张丽君. 转水稻NibT基因玉米植株的获得及抗病性研究. 西北植物学报, 2011, 31: 861–867

Du J Z, Sun Y, Wang J X, Hao Y S, Wang Y X, Zhang L J. Transgenic maize plants with rice NibT gene and their MDMV-resistance. Acta Bot Boreali-Occident Sin, 2011, 31: 861–867 (in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[12] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[15] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
Full text



No Suggested Reading articles found!