Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (11): 1973-1979.doi: 10.3724/SP.J.1006.2014.01973
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Xiao-Li1,2,DU Jian-Zhong1,HAO Yao-Shan1,ZHANG Li-Jun1,ZHAO Xin-Mei1,2,WANG Yi-Xue1,SUN Yi1,2,*
[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560 [2]王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷. 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响. 作物学报, 2011, 37: 2085−2093Wang C J, Li Z Q, Wang X L, Jiang C D, Tang Y D, Gu W B, Shi L. Effects of salt stress on photosystem II activity in sweet sorghum seedlings grown in pots outdoors. Acta Agron Sin, 2011, 37: 2085−2093 (in Chinese with English abstract)[3]Agami R A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot, 2013, 88: 171–177[4]Khodarahmpour Z, Ifar M, Motamedi M. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol, 2012, 11: 298-304[5]Bao Y X, Zhao R, Li F F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379–388[6]Zhou S F, Chen X Y, Zhang X G, Li Y X. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett, 2008, 30: 369–376[7]Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141–146[8]Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep, 2008, 27: 585–592[9]Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155–162[10]张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. 转BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析. 作物学报, 2011, 37: 397–404 Zhang Y M, Zhang H M, Xiang J Y, Guo X L, Liu Z H, Li G L, Chen S Y. Analysis of T-DNA flanking sequences and event-specific detection of transgenic alfalfa with gene BADH. Acta Agron Sin, 2011, 37: 397-404 (in Chinese with English abstract)[11]郭北海, 张艳敏, 李洪杰, 杜立群, 李银心, 张劲松, 陈受宜, 朱至清. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000, 42: 279−283Guo B H, Zhang Y M, Li H J, Du L Q, Li Y X, Zhang J S, Chen S Y, Zhu Z Q. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin, 2000, 42: 279−283 (in Chinese with English abstract)[12]Liu Z H, Zhang H M, Li G L, Guo X L, Chen S Y, Liu G B, Zhang Y M. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178: 363–372[13]韩德俊, 陈耀锋, 李春莲, 郭东伟, 李振岐. 转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究. 干旱地区农业研究, 2007, 25(4): 6−11 Han D J, Chen Y F, Li C L, Guo D W, Li Z Q. Agrobacterium-mediated transformation with a gene encoding for betaine-aldehyde dehydrogenase (BADH) in Brassica napus. Agric Res Arid Areas, 2007, 25(4): 6−11 (in Chinese with English abstract)[14]张宁, 司怀军, 栗亮, 杨涛, 张春凤, 王蒂. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性. 作物学报, 2009, 35: 1146−1150 Zhang N, Si H J, Li L, Yang T, Zhang C F, Wang D. Drought and salinity tolerance in transgenic potato expressing the betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2009, 35: 1146−1150 (in Chinese with English abstract)[15]罗晓丽, 肖娟丽, 王志安, 张安红, 田颖川, 吴家和. 菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析. 生物工程学报, 2008, 24: 1464–1469Luo X L, Xiao J L, Wang Z A, Zhang A H, Tian Y C, Wu J H. Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L. Chin J Biotech, 2008, 24: 1464–1469(in Chinese with English abstract) [16]Wang J X, Sun Y, Cui G M, Hu J J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot Sin, 2001, 43: 275–279 (in English with Chinese abstract)[17]付光明, 苏乔, 吴畏, 赵洪梅, 安利佳. 转BADH基因玉米的获得及其耐盐性. 辽宁师范大学学报(自然科学版), 2006, 29: 344–347Fu G M, Su Q, Wu W, Zhao H M, An J L. Transconduct BADH gene into maize and the salt tolerance of transgenic maize. J Liaoning Norm Univ (Nat Sci Edn), 2006, 29: 344–347 (in Chinese with English abstract)[18]任小燕, 杜建中, 孙毅. 转AhCMO基因玉米后代的获得及耐盐性鉴定. 分子植物育种, 2013, 11: 332–338Ren X Y, Du J Z, Sun Y. Recovery and salt-tolerance evaluation of maize transgenic progeny with AhCMO gene. Mol Plant Breed, 2013, 11: 332–338 (in Chinese with English abstract)[19]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266–273[20]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sun?ower leaves. Sci Hortic, 2004, 103: 93–99[21]Meloni D A, Oliva M A, Martinez C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot, 2003, 49: 69–76[22]王彦玲, 卫文星, 铁双贵, 王延召, 朱卫红, 岳润清, 齐建双. 郑58和掖478玉米自交系基因组差异性分析. 玉米科学, 2010, 18(3): 57–60Wang Y L, Wei W X, Tie S G, Wang Y Z, Zhu W H, Yue R Q, Qi J S. Analysis of genomes difference between Zheng 58 and Ye 478. Maize Sci, 2010, 18(3): 57–60[23]李会勇, 王利锋, 唐保军, 程泽强, 王振华, 铁双贵. 玉米单交种郑单958遗传结构及杂种优势初步研究. 玉米科学, 2009, 17(1): 28–31Li H Y, Wang L F, Tang B J, Cheng Z Q, Wang Z H, Tie S G. Research on the genetic structure and heterosis of Zhengdan 958. Maize Sci, 2009, 17(1): 28–31[24]杜建中, 孙毅, 王景雪, 郝曜山, 程林梅. 转基因玉米中目的基因的遗传表达及其抗病性研究. 西北植物学报, 2007, 27: 1720–1727 Du J Z, Sun Y, Wang J X, Hao Y S, Cheng L M. Stable inheritance and expression of chitinase gene in the transgenic maize plants and their head smut-resistant activity. Acta Bot Boreali-Occident Sin, 2007, 27: 1720–1727 (in Chinese with English abstract)[25]杜建中, 孙毅, 王景雪, 郝曜山, 王亦学, 张丽君. 转水稻NibT基因玉米植株的获得及抗病性研究. 西北植物学报, 2011, 31: 861–867Du J Z, Sun Y, Wang J X, Hao Y S, Wang Y X, Zhang L J. Transgenic maize plants with rice NibT gene and their MDMV-resistance. Acta Bot Boreali-Occident Sin, 2011, 31: 861–867 (in Chinese with English abstract) |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[8] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[9] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[10] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[11] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[12] | HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379. |
[13] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[14] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[15] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
|