Nitrogen fertilizer overused and low use efficiency in agricultural system leads to wasting resources and environment pollution, which is unfavorable for the sustainable agricultural production.In order to improve the nitrogen use efficiency in maize-soybean intercropping system, a two-year field experiment was conducted to investigate the effect of different N application rates and distances on dry matter accumulation and translocation during post-anthesis and grain filling of maize, and the total crop yield in maize-soybean relay strip intercropping system. The experiment included three N application rates [210, 270, and 330 N kg ha-1, which represent reduced 36% (RN36%), 18% (RN18%), and conventional N application amount (CN) , respectively] and four fertilizer application locations [the N fertilizer was applied in the area between the maize and soybean plant rows, the distance from the fertilizer application locations to maize rows was 0 cm (D1),15 cm (D2), 30 cm (D3) and 45 cm (D4), respectively]. The results showed that, compared with CN, dry matter translocation amount and rate, and its contribution to grain yield during maize post-anthesis in the RN18% treatment increased by 22.65%, 18.75%, and 15.90%, respectively, the average filling rate and the maximal filling rate of maize increased by 9.79% and 10.76%, the grain yield of maize, soybean and total crop yield in the maize-soybean relay strip intercropping system increased by 4.95%, 7.07%, and 5.35%, respectively. The fertilizer application locations significantly affected the dry matter accumulation and contribution to grain yield during maize post-anthesis. The fertilizer effect was optimal when the fertilizer application distance was between 15 and 30 cm. With the reduced 18% N application, the average filling rate, the maximal filling rate, grain number per spike and 100-kernel weight of maize in the treatment of D2 were increased by 10.32%, 10.92%, 9.08%, and 4.75%, respectively, compared with the treatment of D1. The maximal grain yields of maize and soybean in this maize-soybean relay strip intercropping system were observed in the treatment of RN18% and D2. It is concluded that reduced N application rate (RN18%) and properly N application locations (15–30 cm to maize row) could promote the dry matter accumulation and translocation during maize post-anthesis, increase the maize grain filling rate, grain number per spike and 100-kernel weight, which could further improve the total grain yield of maize and soybean in this intercropping system.