Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (11): 1964-1972.doi: 10.3724/SP.J.1006.2014.01964

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L.

JIN Yan1,2,LÜ Yan-Yan2,FU San-Xiong2,QI Cun-Kou2,*   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-02-10 Revised:2014-07-06 Online:2014-11-12 Published:2014-07-25
  • Contact: 戚存扣, E-mail: qck9898@sina.com, Tel: 025-84390372, 025-84390367

Abstract:

The middle and lower reaches of Yangtze River is a main producing region of canola (Brassica napus L.) in China. However, canola in this region is subjected to water-logging during planting period to reduce yield. It is of importance to study the inheritance of water-logging tolerance for canola. In this paper a family lines population of six generations of P1, F1, P2, B1:2, B2:2, F2:3 derived from the cross of WR-4 (resistant)×WR-5 (non-resistant) was used to analyse genetic segregation by applying major gene plus polygene mixed inheritance model. The seedling mortality was recorded on the 7th day after logging-removing for plant recovery following six days full-submergence treatment of the seedlings in 2012 and 2013. The results showed that the seedling mortality was respectively fitted the genetic model of E-0 and B-3 i.e. two pairs of additive- dominant-epistatic major gene plus additive-dominant-epistatic polygene model and two pairs of additive major genes model. This result confirms that water-logging tolerance of seedling in this cross is controlled mainly by two major genes which expressed in the mode of additive-dominant-epistatic effects. While dominant effects expressed (2012) it gave a higher value of |ha|=0.3475, |hb|=0.0069 than the additive effect of the major genes which was |da|=|db|=0.0036. In the populations of B1:2, B2:2, and F2:3, h2mg was 36.25%, 61.40%, and 61.84% respectively with an average of 53.16% in 2012, and 8.30%, 30.48%, and 43.13% respectively with an average of 27.30% in 2013. Variance from environment effects was 59.77% of the total phenotypic variance on an average in two years. A conclusion could be made that water-logging tolerance of seedling in B. napus is controlled by two major genes but heavily affected by environment. Since a higher value of h2mg was detected in F2:3 populations, selection in early generations might be an effective way for waterlogging tolerance breeding in B. napus.

Key words: Brassica napus L., Water-logging tolerance, Major gene plus polygene, Genetic model

[1]张冬晓. 我国油菜生产的发展与展望. 中国油料作物学报, 2001, 23: 80–82



Zhang D X, Developmental prospect of rapeseed production in China. Chin J Oil Crop Sci, 2001, 23: 80–82 (in Chinese)



[2]王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101–105



Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci, 2007,  29: 101–105 (in Chinese with English abstract)



[3]Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: effects on morphological characteristics, hormones and photosynthesis. Field Crops Res, 1998, 59: 121–127



[4]李真, 蒲圆圆, 高长斌, 周广生, 涂金星, 傅廷栋. 甘蓝型油菜DH群体苗期耐湿性的评价. 中国农业科学, 2010, 43: 286–292



Li Z, Pu Y Y, Gao C B, Zhou G S, Tu J X, Fu T D. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin, 2010, 43: 286–292 (in Chinese with English abstract)



[5]Gutierrez B F H, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175–179



[6]Zhou W J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103–110



[7]胡官庆, 吴应元, 宋周元, 黄正勤. 油菜湿害表现及生理机制与预防. 安徽农业科学, 2000, 28(2): 171–171



Hu G Q, Wu Y Y, Song Z Y, Huang Z Q. Performance, physiological mechanisms and prevention of waterlogging in rapeseed. J Anhui Agric Sci, 2000, 28(2): 171–171 (in Chinese)



[8]戚存扣, 傅寿仲. 江苏油菜科学技术发展50年. 江苏农业学报, 2010, 26: 430–436



Qi C K, Fu S Z. Fifty years experience of development of cultivars and cultivation of oil-seed rape in Jiangsu Province. Jiangsu J Agric Sci, 2010, 26: 430–436 (in Chinese with English abstract)



[9]张洁夫, 戚存扣. 江苏油菜产业可持续发展的关键技术. 江苏农业学报, 2013, 29: 1236–1240



Zhang J F, Qi C K. Key technologies for sustainable development of rapeseed production in Jiangsu Province. Jiangsu J Agric Sci, 2013, 29: 1236–1240 (in Chinese with English abstract)



[10]宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170–176



Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170–176 (in Chinese with English abstract)



[11]李玲, 张春雷, 张树杰, 李光明. 渍水对冬油菜苗期生长及生理的影响. 中国油料作物学报, 2011, 33: 247–252



Li L, Zhang C L, Zhang S J, Li G M. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.). Chin J Oil Crop Sci, 2011, 33: 247–252 (in Chinese with English abstract)



[12]陈洁, 张学昆, 谌利, 晁国红, 李加纳. 甘蓝型油菜耐湿种质资源的快速筛选. 中国油料作物学报, 2006, 28: 138–143



Chen J, Zhang X K, Chen L, Chao G H, Li J N. Screening for waterlogging tolerance germplasm in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2006, 28: 138–143 (in Chinese)



[13]张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204–208



Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 204–208 (in Chinese with English abstract)



[14]李云, 付三雄, 戚存扣. 油菜苗期耐淹性快速筛选方法的建立及验证. 中国油料作物学报, 2012, 34: 256–261



Li Y, Fu S X, Qi C K. Screening method on waterlogging tolerance of rapeseed seedling through morphology and physiology verification. Chin J Oil Crop Sci, 2012, 34: 256–261 (in Chinese with English abstract)



[15]丛野, 程勇, 邹崇顺, 张学昆, 王汉中. 甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析. 作物学报, 2009, 35: 1462–1467



Cong Y, Cheng Y, Zou C S, Zhang X K, Wang H Z. Genetic analysis of waterlogging tolerance for germinated seeds of rapeseed (Brassica napus L.) with mixed model of major gene plus polygene. Acta Agron Sin, 2009, 35: 1462–1467 (in Chinese with English abstract)



[16]盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 6– 8, 224–265, 351–370



Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Pres, 2003. pp 6– 8, 224–265, 351–370 (in Chinese)



[17]刘后利. 实用油菜栽培学. 上海:上海科学技术出版社, 1987. pp 536–537



Liu H L. Practical Cultivation of Rapeseed. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 536–537 (in Chinese)



[18]Burgos M S, Messmer M M, Stamp P, Schmid J E. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.): a physiological and genetic approach. Euphytica, 2001, 122: 287–295



[19]薛远超, 李加纳, 刘列钊, 徐新福. 甘蓝型油菜EMS诱变材料的耐湿性鉴定与筛选. 西南师范大学学报(自然科学版), 2012, 37(4): 76–80



Xue Y C, Li J N, Liu L K, Xu X F. Identification and screening of waterlogging tolerance of EMS mutagenesis lines in (Brassica napus L.). J Southwest Chin Nor Univ (Nat Sci Edn), 2012, 37(4): 76–80 (in Chinese)



[20]时明芝, 周保松. 植物涝害和耐涝机理研究进展. 安徽农业科学, 2006, 34(2): 209–210



Shi M Z, Zhou B S. Research advance in physiological damage of flood and water-logging resistance. J Anhui Agric Sci, 2006, 34(2): 209–210 (in Chinese with English abstract)



[21]钟雪花, 杨万年, 吕应堂. 淹水胁迫下对烟草、油菜某些生理指标的比较研究. 武汉植物学研究, 2002, 20: 395–398



[22]Zhong X H, Yang W N, Lü Y T. Comparative research on some physiological characteristics of tobacco and rape under flooding stress. J Wuhan Bot Res, 2002, 20: 395–398 (in Chinese with English abstract)



[23]吕艳艳, 金岩, 付三雄, 戚存扣. 不同耐淹油菜品种的耐淹性生理差异. 植物生理学报, 2013, 49: 959–967



Lü Y Y, Jin Y, Fu S X, Qi C K. Physiological differences of different waterlogging resistant Brassica napus L. under waterlogging stress. Plant Physiol J, 2013, 49: 959–967 (in Chinese with English abstract)
[1] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[2] CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118.
[3] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[4] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[5] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[6] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[7] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
[8] Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573.
[9] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[10] WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65.
[11] QU Cun-Min,LU Kun,LIU Shui-Yan,BU Hai-Dong,FU Fu-You,WANG Rui,XU Xin-Fu,LI Jia-Na. SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1914-1924.
[12] LIN Ting-Ting,WANG Jian-Jun,WANG Li,CHEN Xuan,HOU Xi-Lin,LI Ying. Major Gene Plus Polygene Inheritance Analysis of Vitamin C Content in Non-heading Chinese Cabbage [J]. Acta Agron Sin, 2014, 40(10): 1733-1739.
[13] ZHOU Qing-Yuan,CUI Cui,YIN Tao,CHEN Dong-Liang,ZHANG Zheng-Sheng,LI Jia-Na. Genetic Analysis of Silique Length Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(08): 1493-1500.
[14] ZUO Qing-Song,YANG Hai-Yan,LENG Suo-Hu,CAO Shi,ZENG Jiang-Xue,WU Jiang-Sheng,ZHOU Guang-Sheng. Effects of Nitrogen Fertilizer on Nitrogen Accumulation, Translocation and Nitrogen Use Efficiency in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2014, 40(03): 511-518.
[15] HU Mao-Long,LONG Wei-Hua,GAO Jian-Qin,FU San-Xiong,CHEN Feng,ZHOU Xiao-Yin,PENG Qi,ZHANG Wei,PU Hui-Ming*,QI Cun-Kou,ZHANG Jie-Fu,CHEN Song. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus [J]. Acta Agron Sin, 2013, 39(10): 1711-1719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!