[1]Flynn G C, Pohl J, Flocco M T, Rothman J E. Peptide-binding specificity of the molecular chaperone BiP. Nature, 1991, 353: 726–730
[2]Kalinski A, Rowley D L, Loer D S, Foley C, Buta G, Herman E M. Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta, 1995, 195: 611–621
[3]Rutkowski D T, Kaufman R J. A trip to the ER: coping with stress. Trends Cell Biol, 2004, 14: 20–28
[4]Laitusis A L, Brostrom M A, Brostrom C O. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem, 1999, 274: 486–493
[5]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol, 1996, 32: 191–222
[6]Anderson J V, Li Q B, Haskell D W, Guy C L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol, 1994, 104: 1359–1370
[7]Fontes E P B, Silver C J, Carolino S M B, Figueiredo J E F, Batista D P O. A soybean binding protein (BiP) homolog is temporally regulated in soybean seeds and associates detectably with normal storage proteins in vitro. Brazilian J Genet, 1996, 19: 305–312
[8]Cascardo J C, Buzeli R A, Almeida R S, Otoni W C, Fontes E P B. Differential expression of the soybean BiP gene family. Plant Sci, 2001, 160: 273–281
[9]Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One, 2010, 5(2): e2962
[10]Alvim F C, Carolino S M B, Cascardo J C M, Nunes C C, Martinez C A, Otoni W C, Fontes E P B. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol, 2001, 126: 1042–1054
[11]Valente M A, Faria J A, Soares-Ramos J R, Reis P A, Pinheiro G L, Piovesan N D, Fontes E P. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot, 2009, 60: 533–546
[12]Russell L W, Obrian G R, Boston R S. Comparative analysis of Bip gene expression in maize endosperm. Gene, 1997, 204: 105–113
[13]Chappell T G, Welch W J, Schlossman D M, Palter K B, Schlesinger M J, Rothman J E. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell, 1986, 45: 3–13
[14]Munro S, Pelham H R. An Hsp70-like protein in the ER: identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986, 46: 291–300
[15]Chang S C, Wooden S K, Nakaki T, Kim Y K, Lin A Y, Kung L, Lee A S. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc Natl Acad Sci USA, 1987, 84: 680-684
[16]Hendershot L M, Kearney J F. A role for human heavy chain binding protein in the developmental regulation of immunoglobin transport. Mol Immunol, 1988, 25: 585–595
[17]Stevenson M A, Calderwood S K. Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Mol Cell Biol, 1990, 10: 1234–1238
[18]Heijne G V. Towards a comparative anatomy of N-terminal topogenic protein sequences. J Mol Biol, 1986, 189: 239–242
[19]Pelham H R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci, 1990, 15: 483–486
[20]Valente M A, Faria J, Soares-Ramos J, Reis P, Pinheiro G, Piovesan N, Morais A, Menezes C, Cano M, Fietto L, Loureiro M, Aragao F, Fontes E. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot, 2009, 60: 533–546
[21]Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J, 2011, 65: 675–689 |