Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1305-1312.doi: 10.3724/SP.J.1006.2015.01305

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

RNA Interference of OsGABA-T1 Gene Expression Induced GABA Accumulation in Rice Grain

ZHOU Lu, SHEN Bei-Bei, BAI Su-Yang, LIU Xi, JIANG Ling*, ZHAI Hu-Qu, WAN Jian-Min   

  1. Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2015-02-02 Online:2015-09-12 Published:2015-09-12

Abstract: γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid and has been identified to have a function in reducing blood pressure. In order to increase GABA contents in rice grains, we constructed a RNA interference (RNAi) vector suppressing the expression of GABA transaminase 1 gene (OsGABA-T1). GABA transaminase is a key enzyme that converts GABA to succinate semialdehyde (SSA). The RNA interference vector was transformed into the callus of japonica cv. Ningjing 1. qRT-PCR analysis showed that OsGABA-T1 transcript abundance in the RNAi transgenic lines was effectively reduced, so did the homolog gene OsGABA-T2. The GABA contents of brown rice in T3 generation of RNAi lines were 13 times higher than these in Ningjing 1, so did in polished rice as well as brown rice and polished rice stored for four months of post-harvest in transgenic rice, while other main amino acid contents did not change much. In summary, this research provides a basis for breeding a rice variety which could contribute to reduce blood pressure due to the enrichment of GABA contents in rice seeds though effectively suppressing the expression of OsGABA-T1 gene by the RNA interference technique.

Key words: GABA, RNA interference, OsGABA-T1, Transgenic rice

[1] Kearney P M, Whelton M, Reynolds K, Muntner P, Whelton P K, He J. Global burden of hypertension: analysis of worldwide data. Lancet , 2005, 365: 217-223
[2] Zhang S J, Jackson M B. GABA-activated chloride channels in secretory nerve endings. Science , 1993, 259: 531-534
[3] Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr , 2003, 57: 490-495
[4] Kajimoto O, Hirata H, Nakagawa S, Kajimoto Y, Hayakawa, Kimura M. Hypotensive effect of fermented milk containing γ-aminobutyric acid (GABA) in subjects with high normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi , 2004, 51: 79-86 (in Japanese)
[5] 张晖, 姚惠源, 姜元荣. 富含γ-氨基丁酸保健食品的应用与开发. 食品与工业发酵, 2002, 28(9): 69-72 Zhang H, Yao H Y, Jiang Y R. Development of the health food enriched with γ-aminobutyric acid (GABA). Food Fermentation Ind , 2002, 28(9): 69-72 (in Chinese with English abstract)
[6] 罗曦, 曾亚文, 杨树明, 杜娟, 普晓英, 吴殿星. 不同发芽时间下发芽稻谷和糙米不同部位γ-氨基丁酸含量差异. 食品科学, 2009, 30(13): 124-128 Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X. Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination. J Food Sci , 2009, 30(13): 124-128 (in Chinese with English abstract)
[7] 杨树明, 罗曦, 曾亚文, 王雨辰, 普晓英, 杜娟. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性. 西南农业学报, 2009, 22: 236-240 Yang S M, Luo X, Zeng Y W, Wang Y C, Pu X Y, Du J. Variations and correlation of grain yield and γ-aminobutyric acid and resistant starch content in rice cultivars. Southwest China J Agric Sci , 2009, 22: 236-240 (in Chinese with English abstract)
[8] Ling V, Snedden W A, Shelp B J, Assmann S M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell , 1994, 6: 1135-1143
[9] Schultz C J, Coruzzi G M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J , 1995, 7: 61-75
[10] Van Cauwenberghe O R, Shelp B J. Biochemical characterization of partially purified gaba: pyruvate transaminase from Nicotiana tabacum . Phytochemistry , 1999, 52: 575-581
[11] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci , 1999, 4: 446-452
[12] Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol , 1999, 121: 589-597
[13] Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett, 2005, 579: 415-420
[14] Hoover G J, Van Cauwenberghe O R, Breitkreuz K E, Clark S M, Merrill A R, Shelp B J. Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot , 2007, 85: 883-895
[15] Simpson J P, Di Leo R, Dhanoa P K, Allan W L, Makhmoudova A, Clark S M, Hoover G J, Mullen R T, Shelp B J. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot , 2008, 59: 2545-2554
[16] Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J. Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci , 2012, 193: 130-135
[17] Akama K, Akihiro T, Kitagawa M, Takaiwa F. Rice ( Oryza sativa ) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta , 2001, 1552: 143-150
[18] Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase ( OsGAD2 ) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot , 2007, 58: 2699-2707
[19] Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res , 2009, 18: 865-876
[20] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature , 2005, 436: 793-800
[21] Shimajiri Y, Ozaki K, Kainou K, Akama K. Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases ( GABA-Ts ) in rice ( Oryza sativa ). Plant Physiol , 2013, 170: 196-201
[22] Clark S M, Di Leo R, Dhanoa P K, Van Cauwenberghe O R, Mullen R T, Shelp B J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 1743-1757
[23] Clark S M, Di Leo R, Van Cauwenberghe O R, Mullen R T, Shelp B J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 3255-3267
[24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res , 1980, 8: 4321-4325
[25] Kathiresan A, Miranda J, Chinnappa C C, Reid D M. γ-aminobutyric acid promotes stem elongation in Stellaria longipes : the role of ethylene. Plant Growth Regul , 1998, 26: 131-137
[26] Satoshi K, Chiaki M, Mariko T, Erika A, Hiroshi E. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato ( Solanum lycopersicum L.). Plant Cell Physiol , 2013, 54: 793-807
[27] 刘巧泉, 姚泉洪, 王红梅, 顾铭洪. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量. 遗传学报, 2004, 31: 518-524 Liu Q Q, Yao Q H, Wang H M, Gu M H. Endosperm-specific expression of the ferritin gene in transgenic rice ( Oryza sativa L.) results in increased iron content of milling rice. Acta Genet Sin , 2004, 31: 518-524 (in Chinese with English abstract)
[28] 于恒秀, 刘巧泉, 徐丽, 陆美芳, 蔡秀玲, 龚志云, 裔传灯, 王宗阳, 顾铭洪. 无抗性选择标记转基因软米和糯稻新品系的选育及中间试验. 作物学报, 2009, 35: 967-973 Yu H X, Liu Q Q, Xu L, Lu M F, Cai X L, Gong Z Y, Yi C D, Wang Z Y, Gu M H. Breeding and field performance of novel soft and waxy transgenic rice lines without selectable markers. Acta Agron Sin , 2009, 35: 967-973 (in Chinese with English abstract)
[1] LI Xiao-Xu, WANG Rui, ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao. Cloning and functional identification of gene OsATS in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 2045-2052.
[2] LI Jing-Lan,CHEN Xin-Xin,SHI Cui-Cui,LIU Fang-Hui,SUN Jing,GE Rong-Chao. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1217-1224.
[3] MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710.
[4] DONG Yu-Feng, WANG Xu-Jing, SONG Ya-Ya, JIN Xi, and WANG Zhi-Xing. Cultivation of herbicide tolerant transgenic rice by gene spliting technique [J]. Acta Agronomica Sinica, 2019, 45(3): 344-353.
[5] Xiang-Yan ZHOU, Jiang-Wei YANG, Xun TANG, Yi-Kai WEN, Ning ZHANG, Huai-Jun SI. Effect of Silencing C-3 Oxidase Encoded Gene StCPD on Potato Drought Resistance by amiRNA Technology [J]. Acta Agronomica Sinica, 2018, 44(04): 512-521.
[6] WANG Hong-Mei,ZHANG Chang-Quan,LI Qian-Feng,SUN Samuel Sing-Min,LIU Qiao-Quan,XU Ming-Liang. Enhancing Expression and Accumulation of Foreign Proteins by Using the Signal Peptide of Glutelin GluA-2 in Endosperm of Transgenic Rice [J]. Acta Agron Sin, 2015, 41(04): 524-530.
[7] IU Guang-Kuai,CAO Zhen-Zhen,WEI Ke-Su,PAN Gang,SU Da,ZHANG Chun-Jiao,CHENG Fang-Min. RNAi Vector Construction for Protein Disulfide Isomerase Gene and Seed Setting Characteristics in Offspring of Transgenic Rice under High Temperature Treatment [J]. Acta Agron Sin, 2013, 39(05): 816-826.
[8] LIU Yu-Hui,WANG Li,YANG Hong-Yu,YU Bin,LI Yuan-Ming,ZHANG Jun-Lian,WANG Di. Cloning of Granule-Bound Starch Synthase Gene and Construction of Its RNAi Vector in Potato Tuber [J]. Acta Agron Sin, 2012, 38(07): 1187-1195.
[9] WANG Guang,WU Zhi-Dan,ZHANG Lei,LIU Feng-Quan,SHAO Min. Cloning and Functional Analysis of Magnaporthe oryzae-Induced Promoter OsQ16p in Rice [J]. Acta Agron Sin, 2012, 38(06): 980-987.
[10] YANG Zhou,CHEN Hao,TANG Wei,LIN Yong-Jun. Effect of Successive Backcrossing on Eliminating Somaclonal Variation Caused by Agrobacterium-Mediated Transformation in Rice [J]. Acta Agron Sin, 2012, 38(05): 814-819.
[11] DING Zai-Song, ZHOU Bao-Yuan, SUN Xue-Fang, ZHAO Ming. High Light Tolerance is Enhanced by Overexpressed PEPC in Rice under Drought Stress [J]. Acta Agron Sin, 2012, 38(02): 285-292.
[12] WANG Wang-Tian, ZHANG Jin-Wen, WANG Di, ZHANG Jun-Lian, SI Fu-Jun, TAO Shi-Hang. Cloning of Rhamnosyl Transferase Gene and Construction of Its RNAi Vector in Potato [J]. Acta Agron Sin, 2011, 37(11): 1926-1934.
[13] ZHANG Chang-Wei, LING Yang-Hua, SANG Xian-Chun, LI Bing, ZHAO Fang-Meng, YANG Zheng-Lin, LI Yun-Feng, FANG Li-Kuai, HE Guang-Hua. Transgenic Rice Lines Harboring McCHIT1 Gene from Balsam Pear (Momordica charantia L.) and Their Blast Resistance [J]. Acta Agron Sin, 2011, 37(11): 1991-2000.
[14] YIN Meng-Zhi, GUAN Mei, XIAO Gang, LI Quan, GUAN Chun-Yun. RNAi Vector Construction of AtDof1.7 Transcription Factors and Genetic Transformation into Arabidopsis thaliana [J]. Acta Agron Sin, 2011, 37(07): 1196-1204.
[15] SHU Jian-Meng, YAN Hua-Bing, SHI Ying-Hua, WANG Cheng-Zhang. Cloning of Medicago sativa Phychrome B cDNA and Establishment of Its RNA Interference Expression Vector [J]. Acta Agron Sin, 2011, 37(02): 374-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!