Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1305-1312.doi: 10.3724/SP.J.1006.2015.01305
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
ZHOU Lu, SHEN Bei-Bei, BAI Su-Yang, LIU Xi, JIANG Ling*, ZHAI Hu-Qu, WAN Jian-Min
[1] Kearney P M, Whelton M, Reynolds K, Muntner P, Whelton P K, He J. Global burden of hypertension: analysis of worldwide data. Lancet , 2005, 365: 217-223 [2] Zhang S J, Jackson M B. GABA-activated chloride channels in secretory nerve endings. Science , 1993, 259: 531-534 [3] Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr , 2003, 57: 490-495 [4] Kajimoto O, Hirata H, Nakagawa S, Kajimoto Y, Hayakawa, Kimura M. Hypotensive effect of fermented milk containing γ-aminobutyric acid (GABA) in subjects with high normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi , 2004, 51: 79-86 (in Japanese) [5] 张晖, 姚惠源, 姜元荣. 富含γ-氨基丁酸保健食品的应用与开发. 食品与工业发酵, 2002, 28(9): 69-72 Zhang H, Yao H Y, Jiang Y R. Development of the health food enriched with γ-aminobutyric acid (GABA). Food Fermentation Ind , 2002, 28(9): 69-72 (in Chinese with English abstract) [6] 罗曦, 曾亚文, 杨树明, 杜娟, 普晓英, 吴殿星. 不同发芽时间下发芽稻谷和糙米不同部位γ-氨基丁酸含量差异. 食品科学, 2009, 30(13): 124-128 Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X. Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination. J Food Sci , 2009, 30(13): 124-128 (in Chinese with English abstract) [7] 杨树明, 罗曦, 曾亚文, 王雨辰, 普晓英, 杜娟. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性. 西南农业学报, 2009, 22: 236-240 Yang S M, Luo X, Zeng Y W, Wang Y C, Pu X Y, Du J. Variations and correlation of grain yield and γ-aminobutyric acid and resistant starch content in rice cultivars. Southwest China J Agric Sci , 2009, 22: 236-240 (in Chinese with English abstract) [8] Ling V, Snedden W A, Shelp B J, Assmann S M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell , 1994, 6: 1135-1143 [9] Schultz C J, Coruzzi G M. The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J , 1995, 7: 61-75 [10] Van Cauwenberghe O R, Shelp B J. Biochemical characterization of partially purified gaba: pyruvate transaminase from Nicotiana tabacum . Phytochemistry , 1999, 52: 575-581 [11] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci , 1999, 4: 446-452 [12] Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol , 1999, 121: 589-597 [13] Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett, 2005, 579: 415-420 [14] Hoover G J, Van Cauwenberghe O R, Breitkreuz K E, Clark S M, Merrill A R, Shelp B J. Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot , 2007, 85: 883-895 [15] Simpson J P, Di Leo R, Dhanoa P K, Allan W L, Makhmoudova A, Clark S M, Hoover G J, Mullen R T, Shelp B J. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot , 2008, 59: 2545-2554 [16] Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J. Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci , 2012, 193: 130-135 [17] Akama K, Akihiro T, Kitagawa M, Takaiwa F. Rice ( Oryza sativa ) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta , 2001, 1552: 143-150 [18] Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase ( OsGAD2 ) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot , 2007, 58: 2699-2707 [19] Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res , 2009, 18: 865-876 [20] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature , 2005, 436: 793-800 [21] Shimajiri Y, Ozaki K, Kainou K, Akama K. Differential subcellular localization, enzymatic properties and expression patterns of γ-aminobutyric acid transaminases ( GABA-Ts ) in rice ( Oryza sativa ). Plant Physiol , 2013, 170: 196-201 [22] Clark S M, Di Leo R, Dhanoa P K, Van Cauwenberghe O R, Mullen R T, Shelp B J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 1743-1757 [23] Clark S M, Di Leo R, Van Cauwenberghe O R, Mullen R T, Shelp B J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot , 2009, 60: 3255-3267 [24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res , 1980, 8: 4321-4325 [25] Kathiresan A, Miranda J, Chinnappa C C, Reid D M. γ-aminobutyric acid promotes stem elongation in Stellaria longipes : the role of ethylene. Plant Growth Regul , 1998, 26: 131-137 [26] Satoshi K, Chiaki M, Mariko T, Erika A, Hiroshi E. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato ( Solanum lycopersicum L.). Plant Cell Physiol , 2013, 54: 793-807 [27] 刘巧泉, 姚泉洪, 王红梅, 顾铭洪. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量. 遗传学报, 2004, 31: 518-524 Liu Q Q, Yao Q H, Wang H M, Gu M H. Endosperm-specific expression of the ferritin gene in transgenic rice ( Oryza sativa L.) results in increased iron content of milling rice. Acta Genet Sin , 2004, 31: 518-524 (in Chinese with English abstract) [28] 于恒秀, 刘巧泉, 徐丽, 陆美芳, 蔡秀玲, 龚志云, 裔传灯, 王宗阳, 顾铭洪. 无抗性选择标记转基因软米和糯稻新品系的选育及中间试验. 作物学报, 2009, 35: 967-973 Yu H X, Liu Q Q, Xu L, Lu M F, Cai X L, Gong Z Y, Yi C D, Wang Z Y, Gu M H. Breeding and field performance of novel soft and waxy transgenic rice lines without selectable markers. Acta Agron Sin , 2009, 35: 967-973 (in Chinese with English abstract) |
[1] | LI Xiao-Xu, WANG Rui, ZHANG Li-Xia, SONG Ya-Meng, TIAN Xiao-Nan, GE Rong-Chao. Cloning and functional identification of gene OsATS in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 2045-2052. |
[2] | LI Jing-Lan,CHEN Xin-Xin,SHI Cui-Cui,LIU Fang-Hui,SUN Jing,GE Rong-Chao. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1217-1224. |
[3] | MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710. |
[4] | DONG Yu-Feng, WANG Xu-Jing, SONG Ya-Ya, JIN Xi, and WANG Zhi-Xing. Cultivation of herbicide tolerant transgenic rice by gene spliting technique [J]. Acta Agronomica Sinica, 2019, 45(3): 344-353. |
[5] | Xiang-Yan ZHOU, Jiang-Wei YANG, Xun TANG, Yi-Kai WEN, Ning ZHANG, Huai-Jun SI. Effect of Silencing C-3 Oxidase Encoded Gene StCPD on Potato Drought Resistance by amiRNA Technology [J]. Acta Agronomica Sinica, 2018, 44(04): 512-521. |
[6] | WANG Hong-Mei,ZHANG Chang-Quan,LI Qian-Feng,SUN Samuel Sing-Min,LIU Qiao-Quan,XU Ming-Liang. Enhancing Expression and Accumulation of Foreign Proteins by Using the Signal Peptide of Glutelin GluA-2 in Endosperm of Transgenic Rice [J]. Acta Agron Sin, 2015, 41(04): 524-530. |
[7] | IU Guang-Kuai,CAO Zhen-Zhen,WEI Ke-Su,PAN Gang,SU Da,ZHANG Chun-Jiao,CHENG Fang-Min. RNAi Vector Construction for Protein Disulfide Isomerase Gene and Seed Setting Characteristics in Offspring of Transgenic Rice under High Temperature Treatment [J]. Acta Agron Sin, 2013, 39(05): 816-826. |
[8] | LIU Yu-Hui,WANG Li,YANG Hong-Yu,YU Bin,LI Yuan-Ming,ZHANG Jun-Lian,WANG Di. Cloning of Granule-Bound Starch Synthase Gene and Construction of Its RNAi Vector in Potato Tuber [J]. Acta Agron Sin, 2012, 38(07): 1187-1195. |
[9] | WANG Guang,WU Zhi-Dan,ZHANG Lei,LIU Feng-Quan,SHAO Min. Cloning and Functional Analysis of Magnaporthe oryzae-Induced Promoter OsQ16p in Rice [J]. Acta Agron Sin, 2012, 38(06): 980-987. |
[10] | YANG Zhou,CHEN Hao,TANG Wei,LIN Yong-Jun. Effect of Successive Backcrossing on Eliminating Somaclonal Variation Caused by Agrobacterium-Mediated Transformation in Rice [J]. Acta Agron Sin, 2012, 38(05): 814-819. |
[11] | DING Zai-Song, ZHOU Bao-Yuan, SUN Xue-Fang, ZHAO Ming. High Light Tolerance is Enhanced by Overexpressed PEPC in Rice under Drought Stress [J]. Acta Agron Sin, 2012, 38(02): 285-292. |
[12] | WANG Wang-Tian, ZHANG Jin-Wen, WANG Di, ZHANG Jun-Lian, SI Fu-Jun, TAO Shi-Hang. Cloning of Rhamnosyl Transferase Gene and Construction of Its RNAi Vector in Potato [J]. Acta Agron Sin, 2011, 37(11): 1926-1934. |
[13] | ZHANG Chang-Wei, LING Yang-Hua, SANG Xian-Chun, LI Bing, ZHAO Fang-Meng, YANG Zheng-Lin, LI Yun-Feng, FANG Li-Kuai, HE Guang-Hua. Transgenic Rice Lines Harboring McCHIT1 Gene from Balsam Pear (Momordica charantia L.) and Their Blast Resistance [J]. Acta Agron Sin, 2011, 37(11): 1991-2000. |
[14] | YIN Meng-Zhi, GUAN Mei, XIAO Gang, LI Quan, GUAN Chun-Yun. RNAi Vector Construction of AtDof1.7 Transcription Factors and Genetic Transformation into Arabidopsis thaliana [J]. Acta Agron Sin, 2011, 37(07): 1196-1204. |
[15] | SHU Jian-Meng, YAN Hua-Bing, SHI Ying-Hua, WANG Cheng-Zhang. Cloning of Medicago sativa Phychrome B cDNA and Establishment of Its RNA Interference Expression Vector [J]. Acta Agron Sin, 2011, 37(02): 374-379. |
|