Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1313-1323.doi: 10.3724/SP.J.1006.2015.01313

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTLs for Pod Size Related Traits in Cultivated Peanut (Arachis hypogaea L.)

LI Zhen-Dong, LI Xin-Ping, HUANG Li, REN Xiao-Ping, CHENG Yu-Ning, ZHOU Xiao-Jing, LIAO Bo-Shou, JIANG Hui-Fang*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2015-01-15 Online:2015-09-12 Published:2015-09-12

Abstract: One hundred and eighty-eight recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yuanza 9102 × Xuzhou 68-4), were used as mapping population. Finally, a genetic linkage map consisting of 443 SSR loci in 22 linkage groups and covering 713.07 cM with an average distance of 1.96 cM was constructed. The length of linkage group was from 12.37 cM to 81.39 cM and the number of markers was 3-46. QTL mapping of the traits related to pod was conducted by using CIM model in WinQTLcart 2.5. A total of 41 QTLs were detected in the two environments, including thirteen for pod length, seven for pod width, thirteen for pod thickness and right for hundred pod weight, every single QTL explained 3.14%-18.27% of the phenotypic variation. A total of six QTLs were detected in both environments, including three for pod length with explained phenotypic variance of 3.14%-18.27% on the linkage group 2, linkage group 13 and linkage group 14. One for pod thickness with explained phenotypic variance of 8.24%-9.24% on the linkage group 3, and two for hundred pod weight with explained phenotypic variance of 6.95%-14.60% on the linkage group 13 and linkage group 14. The result showed that there were nine hotsports for QTL research, and each of them was associated with 2-3 traits, explaining 3.57%-18.27% of the phenotypic variation.

Key words: Cultivated peanut, Genetic mapping, Pod size, QTL

[1] 廖伯寿. 我国花生科研与产业发展现状及对策. 中国农业信息, 2008, (5): 18-20 Liao B S. Development status and strategies of peanut research and industry development status. China Agric Inform , 2008, (5): 18-20 (in Chinese with English abstract)
[2] 洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395-402 Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J, Construction of genetic linkage map in peanut ( Arachis hypogaea L.) cultivars . Acta Agron Sin , 2009, 35: 395-402 (in Chinese with English abstract)
[3] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, NaitoY, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. in silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol , 2012, 12: 80
[4] Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulket segrant analysis. Electr J Biotechnol , 2009, 12: 1-13
[5] 师家勤. 甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析. 华中农业大学博士学位论文, 湖北武汉, 2009 Shi J Q. Genome-wide Dissection of Genetic Basis of Yield Traits and Heterosis in Brassica napus . PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2009 (in Chinese with English abstract)
[6] 张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2011 Zhang X Y. Inheritance of Main Traits Related to Yield, Quantity and Disease Resistance and Their QTLs Mapping in Peanut ( Arachis hypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2011 (in Chinese with English abstract)
[7] 刘华. 栽培花生产量和品质相关性状遗传分析与QTL定位研究. 河南农业大学硕士学位论文, 河南郑州, 2011 Liu H. Inheritance of Main Traits Related to Yield and Quality, and Their QTL Mapping in Peanut ( Arachis hypogaea L.). MS Thesis of Henan Agricultural University, Zhengzhou, China, 2011 (in Chinese with English abstract)
[8] 禹山林. 中国花生品种及其系谱. 上海: 上海科学与技术出版社, 2008 Yu S L. Peanut Varieties and Pedigree in China. Shanghai Scientific and Technical Publishers, 2008 (in Chinese with English abstract)
[9] 熊文献, 袁建中, 余辉, 喻春强, 熊瑞芳. 高产优质花生新品种远杂9102特征特性及保优节本配套栽培技术. 花生学报, 2003, 32: 500-503 Xiong W X, Yuan J Z, Yu H, Yu C Q, Xiong R F. New cultivation techniques for new variety peanut Yuanza 9102. J Peanut Sci , 2003, 32: 500-503 (in Chinese with English abstract)
[10] Naito Y, Suzuki S, Iwata Y, Kuboyama T. Genetics diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci , 2008, 58: 293-300
[11] Nagy E, Chu Y, Guo Y F, Khananl S, Tang S S, Li Y, Dong W B, Timer P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed , 2010, 26: 357-370
[12] Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M F. Genetic diversity of peanut ( Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol , 2004, 4: 11
[13] Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishan T, Bertioli D J, Knapp S J, Cook D R, Knapp S J, Cook D R, Varshney R K. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut ( Arachis hypogaea ). Plant Breed , 2012, 131: 139-147
[14] Zhao Y, Prakash C S, He G. Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public datebase. BMC Res Notes , 2012, 5: 362
[15] Moretzsohn M C, Leoi L, Proite K, Guimaras P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis ( Fabaceae ). Theor Appl Genet , 2005, 111: 1060-1071
[16] Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae ( Arachis , Fabaceae ). Mol Ecol Notes , 2005, 5: 77-79
[17] Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus, Arachis). Mol Ecol Notes , 2002, 2: 551-553
[18] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut ( A. hypogaea L . ). Theor Appl Genet , 2004, 108: 1064-1070
[19] He G H, Meng R H, Newman M, Cao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2003, 3: 3
[20] Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee K D. Generation of expressed sequence tag (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci , 2005, 45: 346-353
[21] Mace E S, Varshney R K, Mahalakshmi V, Seetha K, Gafoor A, Leeladevi Y, Crouch J H. In silico development of simple sequence repeat markers within the aeschynomenoid/dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea , groundnut. Plant Sci , 2007, 174: 51-60
[22] Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, Da Silva F R, Martins N F, Guimaraes P M. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol , 2007, 7: 7
[23] Gimenes M A, Hosino A A, Barbosa A A G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2007, 7: 9
[24] Wang C T, Yang X D, Chen D Y, Yu L S, Liu G Z, Tang Y Y, Xu J Z. Isolation of simple sequence repeats from groundnut. Electr J Biotech , 2007, 10: 473-480
[25] Cuc L M, Mace E S, Grouch J H, Quang V D, Long T D, Varshney R K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut ( Arachis hypogaea L . ). BMC Plant Biol , 2008, 8: 55
[26] Guo B Z, Chen X P, Hong Y B, Liang X Q, Dang P, Brenneman T, Holbrook C, Culbreath A. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genom , 2009, doi:10.1155/2009/715605
[27] Gautami B, Ravi K, M L, Narasu M L, Hoisington D A, Varshney R K. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol , 2009, 7: 100-106
[28] Van Ooijen J W, Voorips R E. JoinMap Version 3. 0: Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands Plant Research International, 2001
[29] Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes condition in reduced palmitic acid content in N87-2122-4 soybean. Crop Sci , 2002, 42: 373-378
[30] Zeng Z B. Precision mapping of quantitative trait loci. Genetics , 1994, 136: 1457-1468
[31] Qin H D, Feng S P, Chen C, Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut ( Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet , 2012, 124: 653-664
[32] Wang H, Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut ( Arachis hypogaea L . ). BMC Plant Biol , 2012, 12: 10
[33] Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C, Thudi M, Pandey M K, Rami J F, Foncéka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res , 2013, 20: 173-184
[34] 蓝新隆, 唐兆秀, 徐日荣. 福建花生产量与主要农艺性状之间的灰色关联度分析. 江西农业学报, 2011, 23(8): 61-63 Lan X L, Tang Z X, Xu R R. Analysis of gray correlation between yield and major agronomic traits of peanut in Fujian province. Acta Agric Jiangxi , 2011, 23(8): 61-63 (in Chinese with English abstract)
[35] 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农业科学, 2013, 19(16): 22-24 Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agri Sci Bull , 2013, 19(16): 22-24 (in Chinese with English abstract)
[36] 江建华, 倪皖莉, 于欢欢, 管叔琪, 肖美华. 花生单株生产力与主要农艺性状间的相关性研究. 中国农学通报, 2013, 29(36): 125-130 Jiang J H, Ni W L, Yu H H, Guan S Q, Xiao M H. The correlation analysis between productivity per plant and major agronomic traits of peanut. Chin Agric Sci Bull , 2013, 29(36): 125-130 (in Chinese with English abstract)
[37] 李兰周, 刘风珍, 万勇善, 张昆, 赵文祥. 花生荚果和籽仁相关性状的主基因+多基因混合遗传模型分析. 华北农学报, 2013, 28(5): 116-123 Li L Z, Liu F Z, Wan Y S, Zhang K, Zhao W X. Genetic analysis of pod and kernel characters by major gene plus polygene mixed inheritance model in peanut. Acta Agric Boreali-Sin , 2013, 28(5): 116-123 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!