Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (02): 170-179.doi: 10.3724/SP.J.1006.2016.00170
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YUAN Huan-Huan1,2,**,SUN Guang-Hua1,2,**,YAN Lei 2,GUO Lin2,FAN Xiao-Cong1,2,XIAO Yang3,MENG Fan-Hua2,SONG Mei-Fang2,4,ZHAN Ke-Hui1,YANG Qing-hua1,*, YANG Jian-Ping1,2,*
[1] Terol J, Bargues M, Carrasco P, Pérez-Alonso M, Paricio N. Molecular characterization and evolution of the protein phosphatase 2A B’ regulatory subunit family in plants. Plant Physiol, 2002, 129: 808–822[2] Moorhead G B, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol, 2007, 8: 234–244[3] Cohen P T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251[4] Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee J H, Nezames C D, Guo L, Terzaghi W, Wan J, Deng X W, Wang H. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell, 2013, 25: 517–534[5] 刘钊, 贾霖, 贾盟, 关明俐, 曹英豪, 刘丽娟, 曹振伟, 李莉云, 刘国振. 水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达. 中国农业科学, 2012, 45: 2339–2345Liu Z, Jia L, Jia M, Guang L M, Cao Y H, Liu L J, Cao Z W, Li L Y, Liu G Z. Expression on profiling of rice PP2Ac type phosphatase proteins in seedlings under salt stressed conditions. Sci Agric Sin, 2012, 45: 2339–2345 (in Chinese with English abstract)[6] Kim D H, Kang J G, Yang S S, Chung K S, Song P S, Park C M. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell, 2002, 14: 3043–3056[7] Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine /threonine phosphatases. Trends Plant Sci, 2007, 12: 169–176[8] Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, 282: 2226–2230[9] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA, 1998, 95: 15112–15117[10] Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J, 1998, 17: 6903–6911[11] Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002, 108: 661–673[12] Petrásek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazímalová E, Friml J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312: 914–918[13] Dai M, Zhang C, Kania U, Chen F, Xue Q, McCray T, Li G, Qin G, Wakeley M, Terzaghi W, Wan J, Zhao Y, Xu J, Friml J, Deng X W, Wang H. A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis. Plant Cell, 2012, 24: 2497–2514[14] Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol, 2005, 8: 409–414[15] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488[16] Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res, 2011, 124: 509–525[17] Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol, 2011, 21: R346–355 [18] Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol, 2002, 43: 136–140[19] Busk P K, Pagès M. Regulation of abscisic acid induced transcription. Plant Mol Biol, 1998, 37: 425–435[20] Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599–609[21] Lopez-Molina L, Chua N H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol, 2000, 41: 541–547[22] Liu X B, Zhang X Y, Wang Y X, Sui Y Y, Zhang S L, Herbert S J, Ding G. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ, 2010, 56: 87–97[23] Gao Y, Jiang W, Dai Y, Xiao N, Zhang C, Li H, Lu Y, Wu M, Tao X, Deng D, Chen J. A maize phytochrome interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87: 413–428[24] Xu Z S, Ni Z Y, Li Z Y, Li L C, Chen M, Gao D Y, Yu X D, Liu P, Ma Y Z. Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res, 2009, 122: 121–130[25] Tian S J, Mao X G, Zhang H Y, Chen S S, Zhai C C, Yang S M, Jing R L. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot, 2013, 64: 2063–2080[26] Liu Z J, Yang X G, Hubbard K G, Lin X M. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biol, 2012, 18: 3441–3454[27] Yang X, Lin E D, Ma S M, Ju H, Guo L P, Xiong W, Li Y, Xu Y L. Adaptation of agriculture to warming in Northeast China. Clim Change, 2007, 84: 45–58[28] Sun H, Tonks N K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci, 1994, 19: 480–485[29] Hanada M, Ninomiya-Tsuji J, Komaki K, Ohnishi M, Katsura K, Kanamaru R, Matsumoto K, Tamura S. Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem, 2001, 276: 5753–5759[30] 翁华, 冉亮, 魏群. 植物蛋白磷酸酶及其在植物抗逆中的作用. 植物学通报, 2003, 20: 609–615Weng H, Ran L, Wei Q. Protein phosphatases and their functions in plant response to environmental stress. Chin Bull Bot, 2003, 20: 609–615 (in Chinese with English abstract)[31] Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451[32] Shi Y. Serine/Threonine phosphatases: mechanism through structure. Cell, 2009, 139: 468–484[33] Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol, 1997, 13: 203–229[34] Neff M M, Fankhauser C, Chory J. Light: An indicator of time and place. Genes Dev, 2000, 14: 257–271[35] Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13, 2589–2607[36] 李潮海, 刘奎. 不同产量水平玉米杂交种生育后期光合效率比较分析. 作物学报, 2002, 28: 379–383 Li C H, Liu K. Analysis of photosynthesis efficiency of maize hybrids with different yield in the later growth stage. Acta Agron Sin, 2002, 28: 379–383 (in Chinese with English abstract)[37] Smith H. Phytochrome transgenics: functional, ecological and biotechnological applications. Semin Cell Biol. 1994, 5: 315–325[38] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281–311[39] Li J, Li G, Wang H, Deng X W. Phytochrome signaling mechanisms. America: American Society of Plant Biologists,2011. pp1-26[40] Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93[41] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249−3255Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249−3255[42] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989, 1: 765−773[43] Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci USA, 1991, 88: 5207−5211[44] Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627−636[45] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 1999, 120: 73−815[46] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847–857[47] Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120[48] Guo H, Yang H, Mockder T C, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360–1363[49] Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1–8[50] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000, 288: 1613–1616[51] 王翠玲, 程芳芳, 孙朝晖, 库丽霞, 陈晓, 陈彦惠. 玉米光周期敏感性的遗转特性及相关基因的研究进展. 玉米科学, 2008, 16: 11–14Wang C L, Cheng F F, Sun Z H, Ku L X, Chen X, Chen Y H. Advances in genetic research and related genes of photoperiod sensitivity in maize. J Maize Sci, 2008, 16: 11–14 (in Chinese with English abstract)[52] 李思远, 陈晓, 王新涛, 陈彦惠. 玉米光周期敏感类Hd6基因的克隆和实时定量表达分析. 作物学报, 2008, 34: 713−717Li S Y, Chen X, Wang X T, Chen Y H. Clone and quantitative analysis by real-time RT-PCR of photoperiod sensitive gene Hd6-like in maize. Acta Agron Sin, 2008, 34: 713−717 (in Chinese with English abstract)[53] Yu R M, Zhou Y, Xu Z F, Chye M L, Kong R Y. Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol, 2003, 51: 295–311 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[3] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[4] | LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107. |
[5] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[6] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. |
[7] | MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202. |
[8] | JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649. |
[9] | MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236. |
[10] | ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912. |
[11] | Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711. |
[12] | LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543. |
[13] | JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175. |
[14] | SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016. |
[15] | YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037. |
|