[1] Terol J, Bargues M, Carrasco P, Pérez-Alonso M, Paricio N. Molecular characterization and evolution of the protein phosphatase 2A B’ regulatory subunit family in plants. Plant Physiol, 2002, 129: 808–822
[2] Moorhead G B, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol, 2007, 8: 234–244
[3] Cohen P T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251
[4] Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee J H, Nezames C D, Guo L, Terzaghi W, Wan J, Deng X W, Wang H. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell, 2013, 25: 517–534
[5] 刘钊, 贾霖, 贾盟, 关明俐, 曹英豪, 刘丽娟, 曹振伟, 李莉云, 刘国振. 水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达. 中国农业科学, 2012, 45: 2339–2345
Liu Z, Jia L, Jia M, Guang L M, Cao Y H, Liu L J, Cao Z W, Li L Y, Liu G Z. Expression on profiling of rice PP2Ac type phosphatase proteins in seedlings under salt stressed conditions. Sci Agric Sin, 2012, 45: 2339–2345 (in Chinese with English abstract)
[6] Kim D H, Kang J G, Yang S S, Chung K S, Song P S, Park C M. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell, 2002, 14: 3043–3056
[7] Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine /threonine phosphatases. Trends Plant Sci, 2007, 12: 169–176
[8] Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, 282: 2226–2230
[9] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA, 1998, 95: 15112–15117
[10] Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J, 1998, 17: 6903–6911
[11] Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002, 108: 661–673
[12] Petrásek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazímalová E, Friml J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312: 914–918
[13] Dai M, Zhang C, Kania U, Chen F, Xue Q, McCray T, Li G, Qin G, Wakeley M, Terzaghi W, Wan J, Zhao Y, Xu J, Friml J, Deng X W, Wang H. A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis. Plant Cell, 2012, 24: 2497–2514
[14] Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol, 2005, 8: 409–414
[15] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488
[16] Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res, 2011, 124: 509–525
[17] Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol, 2011, 21: R346–355
[18] Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol, 2002, 43: 136–140
[19] Busk P K, Pagès M. Regulation of abscisic acid induced transcription. Plant Mol Biol, 1998, 37: 425–435
[20] Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599–609
[21] Lopez-Molina L, Chua N H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol, 2000, 41: 541–547
[22] Liu X B, Zhang X Y, Wang Y X, Sui Y Y, Zhang S L, Herbert S J, Ding G. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ, 2010, 56: 87–97
[23] Gao Y, Jiang W, Dai Y, Xiao N, Zhang C, Li H, Lu Y, Wu M, Tao X, Deng D, Chen J. A maize phytochrome interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87: 413–428
[24] Xu Z S, Ni Z Y, Li Z Y, Li L C, Chen M, Gao D Y, Yu X D, Liu P, Ma Y Z. Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res, 2009, 122: 121–130
[25] Tian S J, Mao X G, Zhang H Y, Chen S S, Zhai C C, Yang S M, Jing R L. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot, 2013, 64: 2063–2080
[26] Liu Z J, Yang X G, Hubbard K G, Lin X M. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biol, 2012, 18: 3441–3454
[27] Yang X, Lin E D, Ma S M, Ju H, Guo L P, Xiong W, Li Y, Xu Y L. Adaptation of agriculture to warming in Northeast China. Clim Change, 2007, 84: 45–58
[28] Sun H, Tonks N K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci, 1994, 19: 480–485
[29] Hanada M, Ninomiya-Tsuji J, Komaki K, Ohnishi M, Katsura K, Kanamaru R, Matsumoto K, Tamura S. Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem, 2001, 276: 5753–5759
[30] 翁华, 冉亮, 魏群. 植物蛋白磷酸酶及其在植物抗逆中的作用. 植物学通报, 2003, 20: 609–615
Weng H, Ran L, Wei Q. Protein phosphatases and their functions in plant response to environmental stress. Chin Bull Bot, 2003, 20: 609–615 (in Chinese with English abstract)
[31] Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451
[32] Shi Y. Serine/Threonine phosphatases: mechanism through structure. Cell, 2009, 139: 468–484
[33] Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol, 1997, 13: 203–229
[34] Neff M M, Fankhauser C, Chory J. Light: An indicator of time and place. Genes Dev, 2000, 14: 257–271
[35] Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13, 2589–2607
[36] 李潮海, 刘奎. 不同产量水平玉米杂交种生育后期光合效率比较分析. 作物学报, 2002, 28: 379–383
Li C H, Liu K. Analysis of photosynthesis efficiency of maize hybrids with different yield in the later growth stage. Acta Agron Sin, 2002, 28: 379–383 (in Chinese with English abstract)
[37] Smith H. Phytochrome transgenics: functional, ecological and biotechnological applications. Semin Cell Biol. 1994, 5: 315–325
[38] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281–311
[39] Li J, Li G, Wang H, Deng X W. Phytochrome signaling mechanisms. America: American Society of Plant Biologists,2011. pp1-26
[40] Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93
[41] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249−3255
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249−3255
[42] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989, 1: 765−773
[43] Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci USA, 1991, 88: 5207−5211
[44] Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627−636
[45] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 1999, 120: 73−815
[46] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847–857
[47] Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120
[48] Guo H, Yang H, Mockder T C, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360–1363
[49] Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1–8
[50] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000, 288: 1613–1616
[51] 王翠玲, 程芳芳, 孙朝晖, 库丽霞, 陈晓, 陈彦惠. 玉米光周期敏感性的遗转特性及相关基因的研究进展. 玉米科学, 2008, 16: 11–14
Wang C L, Cheng F F, Sun Z H, Ku L X, Chen X, Chen Y H. Advances in genetic research and related genes of photoperiod sensitivity in maize. J Maize Sci, 2008, 16: 11–14 (in Chinese with English abstract)
[52] 李思远, 陈晓, 王新涛, 陈彦惠. 玉米光周期敏感类Hd6基因的克隆和实时定量表达分析. 作物学报, 2008, 34: 713−717
Li S Y, Chen X, Wang X T, Chen Y H. Clone and quantitative analysis by real-time RT-PCR of photoperiod sensitive gene Hd6-like in maize. Acta Agron Sin, 2008, 34: 713−717 (in Chinese with English abstract)
[53] Yu R M, Zhou Y, Xu Z F, Chye M L, Kong R Y. Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol, 2003, 51: 295–311 |