Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (11): 1656-1665.doi: 10.3724/SP.J.1006.2016.01656

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of ZmMADS-RIN Gene for Regulating the Kernel Development of Maize

XIA Xue, MA Chen-Yu, BAI Qing-He, FENG Yuan-Yuan, WANG Shun-You, WANG Xi, ZHOU Qing-Li, and XI Zhang-Ying*   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
  • Received:2016-02-04 Revised:2016-06-20 Online:2016-11-12 Published:2016-07-04
  • Contact: 席章营,E-mail:xizhangying@163.com 第一作者联系方式:E-mail:xiaxue282522@163.com
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31371629).

Abstract:

Kernel development is the most important character of maize. In this study, a maize gene named ZmMADS-RIN encoding MADS-box protein relating to kernel development was isolated. The full length cDNA of ZmMADS-RIN is 859 bp, and it contains an open reading frame (ORF) with 768 nucleotides and encodes 255 amino acid residues. The variable analysis of ZmMADS-RIN in coding region showed that six nucleotides and three amino acid residues were different between Zheng 58 and B73. Bioinformatics analyses showed that ZmMADS-RIN was a hydrophilic protein with a molecular weight of 29.23 kD, a theoretical isoelectric point of 8.84, and five phosphorylation sites, but signal peptide sequence and transmembrane domain were not found. The secondary structure of ZmMADS-RIN protein contained 50.20% of alpha helix, 27.45% of random coil, 14.51% of extended strand and 7.84% of beta turn. ZmMADS-RIN protein was tested to be a typical MIKC-type protein localized in nucleus with highly conserved MADS domain, relatively conserved K domain, less weakly conserved I domain and most variable C domain. Phylogenetic analysis indicated that ZmMADS-RIN protein belongs to the same branch of AGL6, and shows high similarity of 89% to OsMADS6 protein from Oryza sativa. RT-PCR results showed that ZmMADS-RIN expressed in kernel specially, and not in root or leaf during different phases. In addition, qRT-PCR results indicated that the expression of ZmMADS-RIN increased continually from zero day to 20 days after pollination, and reached the highest level at the 20th day, then decreased significantly. And it could not be detected during 30th?40th days. These results demonstrated that ZmMADS-RIN might be associated with the regulation of developing kernel in maize.

Key words: Maize, Kerneldevelopment, ZmMADS-RIN, Genecloning, RT-PCR

[1]NgM,YanofskyMF.FunctionandevolutionoftheplantMADS-boxgenefamily.NatRevGenet,2001,2:186–195 [2]Alvarez-BuyllaER,LiljegrenSJ,PelazS,GoldSE,BurgeffC,DittaGS,Vergara-SilvaF,YanofskyMF.MADS-boxgeneevolutionbeyondflowers:expressioninpollen,endosperm,guardcells,rootsandtrichomes.PlantJ,2000,24:457–466 [3]deBodtS,RaesJ,FlorquinK,RombautsS,RouzéP,Thei?enG,VandePeerY.GenomewidestructuralannotationandevolutionaryanalysisofthetypeIMADS-boxgenesinplants.JMolEvol,2003,56:573–586 [4]ZhangZB,LiHY,ZhangDF,LiuYH,FuJ,ShiYS,SongYC,WangTY,LiY.CharacterizationandexpressionanalysisofsixMADS-boxgenesinmaize(ZeamaysL.).JPlantPhysiol,2012,169:797–806 [5]LesebergCH,EisslerCL,WangX,JohnsMA,DuvallMR,MaoL.InteractionstudyofMADS-domainproteinsintomato.JExpBot,2008,59:2253–2265 [6]ShuYJ,YuDS,WangD,GuoDL,GuoCH.Genome-widesurveyandexpressionanalysisoftheMADS-boxgenefamilyinsoybean.MolBiolRep,2013,40:3901–3911 [7]BeckerA,Thei?enG.ThemajorcladesofMADS-boxgenesandtheirroleinthedevelopmentandevolutionoffloweringplants.MolPhylogenetEvol,2003,29:464–489 [8]KuAT,HuangYS,WangYS,MaDF,YehKW.IbMADS1(IpomoeabatatasMADS-box1gene)isinvolvedintuberousrootinitiationinsweetpotato(Ipomoeabatatas).AnnBot,2008,102:57–67 [9]BenllochR,RoqueE,FerrándizC,CossonV,CaballeroT,PenmetsaRV,BeltránJP,Ca?asLA,RatetP,Madue?oF.AnalysisofBfunctioninlegumes:PISTILLATAproteinsdonotrequirethePImotifforfloralorgandevelopmentinMedicagotruncatula.PlantJ,2009,60:102–111 [10]FerrarioS,ShchennikovaAV,FrankenJ,ImminkRGH,AngenentGC.ControloffloralmeristemdeterminacyinpetuniabyMADS-boxtranscriptionfactors.PlantPhysiol,2006,140:890–898 [11]韩利涛,姜伟,杨守萍,喻德跃,盖钧镒.大豆细胞质雄性不育系MADS-box基因的分离分析.作物学报,2010,36:905–910 HanLT,JiangW,YangSP,YuDY,GaiJY.IsolationandanalysisofMADS-boxgenefromsoybean(GlycinemaxL.Merr)cytoplasmicmalesterileline.ActaAgronSin,2010,36:905–910(inChinesewithEnglishabstract) [12]KaufmannK,Mui?oJM,JaureguiR,AiroldiCA,SmaczniakC,KrajewskiP,AngenentGC.TargetgenesoftheMADStranscriptionfactorSEPALLATA3:IntegrationofdevelopmentalandhormonalpathwaysintheArabidopsisflower.PLoSBiol,2009,7:854–875 [13]MichaelsSD,DittaG,Gustafson-BrownC,PelazS,YanofskyM,AmasinoRM.AGL24actsasapromoteroffloweringinArabidopsisandispositivelyregulatedbyvernalization.PlantJ,2003,33:867–874 [14]MaraCD,IrishVF.TwoGATAtranscriptionfactorsaredownstreameffectorsoffloralhomeoticgeneactioninArabidopsis.PlantPhysiol,2008,147:707–718 [15]汪潇琳,陈艳萍,喻德跃.MADS-box基因GmAGL15在大豆种子发育过程中的表达.作物学报,2008,34:330–332 WangXL,ChenYP,YuDY.ExpressionoftheMADS-boxgeneGmAGL15inseeddevelopmentofsoybean.ActaAgronSin,2008,34:330–332(inChinesewithEnglishabstract) [16]ItoY,KitagawaM,IhashiN,YabeK,KimbaraJ,YasudaJ,ItoH,InakumaT,HiroiS,KasumiT.DNA-bindingspecificity,transcriptionalactivationpotential,andtherinmutationeffectforthetomatofruit-ripeningregulatorRIN.PlantJ,2008,55:212–223 [17]VrebalovJ,RuezinskyD,PadmanabhanV,WhiteR,MedranoD,DrakeR,SchuchW,GiovannoniJ.AMADS-boxgenenecessaryforfruitripeningatthetomatoRipening-Inhibitor(Rin)locus.Science,2002,296:343–346 [18]BattagliaR,BrambillaV,ColomboL,StuitjeAR,KaterMM.FunctionalanalysisofMADS-boxgenescontrollingovuledevelopmentinArabidopsisusingtheethanol-induciblealcgene-expressionsystem.MechanismsDevelopment,2006,123:267–276 [19]MoyleR,FairbairnDJ,RipiJ,CroweM,BotellaJR.Developingpineapplefruithasasmalltranscriptomedominatedbymetallothionein.JExpBot,2005,56:101–112 [20]DreniL,JacchiaS,FornaraF,FornariM,OuwerkerkPBF,AnG,ColomboL,KaterMM.TheD-lineageMADS-boxgeneOsMADS13controlsovuleidentityinrice.PlantJ,2007,52:690–699 [21]MazzucatoA,OlimpieriI,SiligatoF,PicarellaME,SoressiGP.CharacterizationofgenescontrollingstamenidentityanddevelopmentinaparthenocarpictomatomutantindicatesarolefortheDEFICIENSorthologinthecontroloffruitset.PhysiolPlant,2008,132:526–537 [22]刘菊华,徐碧玉,张静,金志强.MADS-box转录因子的相互作用及对果实发育和成熟的调控.遗传,2010,32:893–902 LiuJH,XuBY,ZhangJ,JinZQ.TheinteractionofMADS-boxtranscriptionfactorsandmanipulatingfruitdevelopmentandripening.Hereditas,2010,32:893–902(inChinesewithEnglishabstract) [23]ColomboM,MasieroS,VanzulliS,LardelliP,KaterMM,ColomboL.AGL23,atypeIMADS-boxgenethatcontrolsfemalegametophyteandembryodevelopmentinArabidopsis.PlantJ,2008,54:1037–1048 [24]DinnenyJR,WeigelD,YanofskyMF.AgeneticframeworkforfruitpatterninginArabidopsisthaliana.Development,2005,132:4687–4696 [25]SeymourGB,RyderCD,CevikV,HammondJP,PopovichA,KingGJ,VrebalovJ,GiovannoniJJ,ManningK.ASEPALLATAgeneisinvolvedinthedevelopmentandripeningofstrawberry(Fragaria×ananassaDuch.)fruit,anonclimacterictissue.JExpBot,2011,62:1179–1188 [26]周厚成,李刚,赵霞,康兆茹,郭蔼光.森林草莓全基因组MADS-box转录因子基因的鉴定及凤梨草莓果实FaMADS1基因克隆.植物生理学报,2014,50:1630–1638 ZhouHC,LiG,ZhaoX,KangZR,GuoAG.Genome-widesequenceidentificationofMADS-boxtranscriptionfactorgenefamilyfromFragariavescaandcloningofFaMADS1genefromF.ananassafruit.PlantPhysiolJ,2014,50:1630–1638(inChinesewithEnglishabstract) [27]FerrándizC,LiljegrenSJ,YanofskyMF.NegativeregulationoftheSHATTERPROOFgenesbyFRUITFULLduringArabidopsisfruitdevelopment.Science,2000,289:436–438 [28]LiljegrenSJ,DittaGS,EshedY,SavidgeB,BowmanJL,YanofskyMF.SHATTERPROOFMADS-boxgenescontrolseeddispersalinArabidopsis.Nature,2000,404:766–770 [29]DongTT,HuZL,DengL,WangY,ZhuMK,ZhangJL,ChenGP.AtomatoMADS-boxtranscriptionfactor,SlMADS1,actsasanegativeregulatoroffruitripening.PlantPhysiol,2013,163:1026–1036 [30]MünsterT,DeleuW,WingenLU,OuzunovaM,CacharrónJ,FaiglW,WerthS,KimJTT,SaedlerH,Thei?enG.MaizeMADS-boxgenesgalore.Maydica,2002,47:287–301 [31]MalcomberST,KelloggEA.HeterogeneousexpressionpatternsandseparaterolesoftheSEPALLATAgeneLEAFYHULLSTERILE1ingrasses.PlantCell,2004,16:1692–1706 [32]ThompsonBE,BartlingL,WhippleC,HallDH,SakaiH,SchmidtR,HakeS.bearded-earencodesaMADSboxtranscriptionfactorcriticalformaizefloraldevelopment.PlantCell,2009,21:2578–2590 [33]Lopez-DeeZP,WittichP,PèME,RigolaD,BuonoID,GorlaMS,KaterMM,ColomboL.OsMADS13,anovelriceMADS-boxgeneexpressedduringovuledevelopment.DevGenet,1999,25:237–244 [34]MooreS,VrebalovJ,PaytonP,GiovannoniJ.Useofgenomicstoolstoisolatekeyripeninggenesanalysefruitmaturationintomato.JExpBot,2002,53:2023–2030 [35]DongTT,ChenGP,TianSB,XieQL,YinWC,ZhangYJ,HuZL.Anon-climactericfruitgeneCaMADS-RINregulatesfruitripeningandethylenebiosynthesisinclimactericfruit.PLoSOne,2014,9:e95559 [36]WangL,YinXJ,ChengCX,WangH,GuoRR,XuXZ,ZhaoJ,ZhengY,WangXP.EvolutionaryandexpressionanalysisofaMADS-boxgenesuperfamilyinvolvedinovuledevelopmentofseededandseedlessgrapevines.MolGenetGenomics,2015,290:825–846 [37]LiuJH,XuBY,HuLF,LiMY,SuW,WuJ,YangJH,JinZQ.InvolvementofabananaMADS-boxtranscriptionfactorgeneinethyleneinducedfruitripening.PlantCellRep,2009,28:103–111 [38]WangXT,WuLJ,ZhangSF,WuLC,KuLX,WeiXM,XieLL,ChenYH.RobustexpressionandassociationofZmCCA1withcircadian.PlantCellRep,2011,30:1261–1272 [39]RajeevanMS,RanamukhaarachiDG,VernonSD,UngerER.Useofreal-timequantitativePCRtovalidatetheresultsofcDNAarrayanddifferentialdisplayPCRtechnologies.Methods,2001,25:443–451 [40]ZhangJ,NallamilliBR,MujahidH,PengZH.OsMADS6playsanessentialroleinendospermnutrientaccumulationandissubjecttoepigeneticregulationinrice(Oryzasativa).PlantJ,2010,64:604–617 [41]LeeS,KimJ,SonJS,NamJ,JeongDH,LeeK,JangS,YooJ,LeeJ,LeeDY,KangHG,AnG.SystematicreversegeneticscreeningofT-DNAtaggedgenesinriceforfunctionalgenomicanalyses:MADS-boxgenesasatestcase.PlantCellPhysiol,2003,44:1403–1411 [42]BusiVM,BustamanteC,AngeloCD,Hidalgo-CuevasM,BoggioSB,ValleEM,ZabaletaE.MADS-boxgenesexpressedduringtomatoseedandfruitdevelopment.PlantMolBiol,2003,52:801–815 [43]张冬梅,刘洋,赵永锋,祝丽英,黄亚群,郭晋杰,陈景堂.不同杂种优势群玉米籽粒灌浆速率分析.中国农业科学,2014,47:3323–3335 ZhangDM,LiuY,ZhaoYF,ZhuLY,HuangYQ,GuoJJ,ChenJT.Analysisofmaizegrainfillingrateindifferentheteroticgroups.SciAgricSin,2014,47:3323–3335(inChinesewithEnglishabstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[12] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!