Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (11): 1577-1591.doi: 10.3724/SP.J.1006.2016.01577
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
QIN Peng-Fei,SHANG Xiao-Guang,SONG Jian,GUO Wang-Zhen*
[1]. Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663–5681 [2]. Guidotti A, Forchetti C M, Corda M G, Konkel D, Bennett C D, Costa E. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA, 1983, 80: 3531–3535 [3]. Alho H, Costa E, Ferrero P, Fujimoto M, Cosenza-Murphy D, Guidotti A. Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science, 1985, 229: 179–182 [4]. Weselake R J, Nykiforuk C L, Laroche A, Patterson N A, Wiehler W B, Szarka S J, Moloney M M, Tari L W, Derekh U. Expression and properties of diacylglycerol acyltransferase from cell-suspension cultures of oilseed rape. Biochem Soc T, 2000, 28. 6 [5]. Hills M J, Dann R, Lydiate D, Sharpe A. Molecular cloning of a cDNA from Brassicanapus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol, 1994, 25: 917–920 [6]. Engeseth N J, Pacovsky R S, Newman T, Ohlrogge J B. Characterization of an Acyl-CoA-Binding Protein from Arabidopsis thaliana. Arch Biochem Biophys, 1996, 331: 55–62 [7]. Erber A, Horstmann C, Schobert C. A cDNA clone for acyl-CoA-binding protein from castor bean. Plant Physiol, 1997, 114: 396–396 [8]. Metzner M L, Ruecknagel K P, Knudsen J, Kuellertz G, Mueller-Uri F, Diettrich B. Isolation and characterization of two acyl-CoA-binding proteins from proembryogenic masses of Digitalis lanataEhrh. Planta, 2000, 210: 683–685 [9]. Guerrero C, Martín-Rufián M, Reina JJ, Heredia A. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis. Plant Physiol Bioch, 2006, 44: 85–90 [10]. Reddy A, Ranganathan B, Haisler R, Swize M. A cDNA encoding acyl-CoA-binding protein from cotton. Plant Physiol, 1996, 111: 348 [11]. Burton M, Rose T M, Faergeman N J, Knudsen J. Evolution of the acyl-CoA binding protein (ACBP). Biochem J, 2005, 392: 299–307 [12]. Xiao S, Chye M L. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res, 2011, 50: 141–151 [13]. Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res, 2010, 49: 218–234 [14]. Xiao S, Chye M L. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Bioch, 2009, 47: 479–484 [15]. Kannan L, Knudsen J, Jolly C A. Aging and acyl-CoA binding protein alter mitochondrial glycerol-3-phosphate acyltransferase activity. Biochim Biophys Acta, 2003, 1631: 12–16 [16]. Knudsen J, Burton M, Faergeman N. Long chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. Advances in Molecular and Cell Biology: Elsevier, 2003. pp: 123–152 [17]. Faergeman N J, Feddersen S, Christiansen J K, Larsen M K, Schneiter R, Ungermann C, Mutenda K, Roepstorff P, Knudsen J. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem J, 2004, 380: 907–918 [18]. Gaigg B, Neergaard T B, Schneiter R, Hansen J K, Faergeman N J, Jensen N A, Andersen J R, Friis J, Sandhoff R, Schr?der H D, Knudsen J. Depletion of Acyl-Coenzyme A-Binding Protein Affects Sphingolipid Synthesis and Causes Vesicle Accumulation and Membrane Defects in Saccharomyces cerevisiae. Mol Biol Cell, 2001, 12: 1147–1160 [19]. Larsen M K, Tuck S, Faergeman N J, Knudsen J. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans. Mol Biol Cell, 2006, 17: 4318–4329 [20]. Chen Q F, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye M L. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol, 2010, 186: 843–855 [21]. Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J, 2003, 33: 75–86 [22]. Sellwood C, Slabas A, Rawsthorne S. Effects of manipulating expression of acetyl-CoA carboxylase I in Brassica napus L. embryos. Biochem Soc T, 2000, 28: 598–600 [23]. Gao W, Xiao S, Li H Y, Tsao S W, Chye M L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol, 2009, 181: 89–102 [24]. Du Z Y, Chen M X, Chen Q F, Xiao S, Chye M L. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ, 2013, 36: 300-314. [25]. Du Z Y, Xiao S, Chen Q F, Chye M L. Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol, 2010, 152: 1585–1597 [26]. Chen Q F, Xiao S, Chye M L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol, 2008, 148: 304–315 [27]. Meng W, Su Y C, Saunders R M, Chye M L. The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. New Phytol, 2011, 189: 1170–1184 [28].戴海芳, 武辉, 阿曼古丽?买买提阿力, 王立红, 麦麦提?阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47: 1290–1300 Dai H F, Wu H, Amanguli?Maimaitiali, Wang L H, Maimaiti?Apizi, Zhang J S. Scientia Agricultura Sinica, 2014, 47: 1290–1300 (in Chinese with English abstract). [29]. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537 [30]. Zhang F, Li S, Yang S, Wang L, Guo W. Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol, 2015, 87: 47–67 [31]. Julie D. Thompson T J G, Frédéric P, Fran?ois J D G. Higgins. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882 [32]. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739 [33]. Xiao S, Chye M L. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol, 2011, 156: 2069–2081 [34]. Xiao S, Gao W, Chen Q F, Chan S W, Zheng S X, Ma J, Wang M, Welti R, Chye M L. Overexpression of Arabidopsis Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence. Plant Cell, 2010, 22: 1463–1482 [35]. Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana. PLoS One, 2015, 10: e0143022 [36]. Shi J, Zhang L, An H, Wu C, Guo X. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol, 2011, 12: 22 |
[1] | XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[4] | XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536. |
[5] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[6] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[7] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[8] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
[9] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[10] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[11] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[12] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[13] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[14] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[15] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
|