Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (03): 354-370.doi: 10.3724/SP.J.1006.2017.00343

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress

PENG Zhen1,2,HE Shou-Pu1,GONG Wen-Fang1,PAN Zhao-E1,JIA Yin-Hua1,LU Yan-Li2,*,DU Xiong-Ming1,*   

  1. 1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, China; 2 Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China
  • Received:2016-05-12 Revised:2015-09-18 Online:2017-03-12 Published:2016-09-28
  • Contact: 杜雄明, E-mail: dxm630723@163.com;卢艳丽, E-mail: yanli.lu82@hotmail.com E-mail:cripengzhen09@126.com
  • Supported by:

    This study was supported by the National Science and Technology Support Program of China (2013BAD01B03) and the National Natural Science Found (31301365)。

Abstract:

A comparative transcriptomics was used to analyze the expression changes of transcription factors and their families in leaves of the two cotton (Gossypium hirsutum L.) varieties (Earlistaple 7 with salt-tolerance and Nandanbadidahua with salt-sensitive) under 200 mmolL–1 NaCl stress for 4 and 24 hours. We have identified and quantified 2815 transcription factors from 54 transcription factor families of the samples. A total of 249 differentially expressed transcription factor genes of ‘Earlistaple 7’ and 261 transcription factor genes of ‘Nandanbadidahua’ after 4 hours of NaCl stress were identified, respectively. With prolonging stress time (24 hours), the number of differentially expressed transcription factors in two cotton varieties responsive to salt was increased. It was found that the 106 (4 hours) and 184 (24 hours) transcription factor genes were specially expressed in salt-tolerant variety, and the 143 (4 hours) and 282 (24 hours) were exhibited commonly in both cotton lines. We have obtained 124 salt-tolerance-related transcription factor genes from 26 transcription factor families through screening, and further validated the data accuracy by quantitative Real-time PCR.Total 11 highly expressed transcription factors genes by salt induction, including CotAD_66280 (HD-ZIP), CotAD_47058 (ERF), CotAD_18472 (G2-like), CotAD_04289 (C2H2), CotAD_57763 (HSF), CotAD_23656 (TCP), CotAD_02221 (ERF), CotAD_23975 (WRKY), CotAD_54036 (MYB), CotAD_27788 (NAC), and CotAD_23815 (HSF) were induced to be closely related to salt tolerance in upland cotton, and might be used as a source of candidate tolerant genes for upland cotton breeding.

Key words: Upland cotton, NaCl Stress, Transcriptome analysis, Transcription factor

[1]王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673–684
Wang J L, Huang X J, Zhong T Y Chen Z G. Review on sustainable utilization of salt-affected land. Acta Geograph Sin, 2011, 66: 673–684 (in Chinese with English abstract)
[2]张国伟, 路海玲, 张雷, 陈兵林, 周治国. 棉花萌发期和幼苗耐盐性评价及耐盐指标筛选. 应用生态学报, 2011, 22: 2045–2053
Zhang G W, Lu H L, Zhang L, Chen B L, Zhou Z G. Salt tolerance evaluation of cotton (Gossypium hirsutum L.) at its germinating and seedling stages and selection of related indices. Chin J Appl Ecol, 2011, 22: 2045–2053 (in Chinese with English abstract)
[3]Wu C A, Yang G D, Meng Q W, Zheng C C. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol, 2004, 45: 600–607
[4]Gao S Q, Chen M, Xia L Q, Xu H H, Xu Z S, Li L C, Zhao C P, Cheng X G, Ma Y Z. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep, 2009, 28: 301–311
[5]Lu W, Chu X, Li Y, Wang C, Guo X. Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One, 2013, 8: e68503
[6]Zhou L, Wang N N, Gong S Y, Lu R, Li Y, Li X B. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem, 2015, 96: 311–320
[7]Zhang F, Li S, Yang S, Wang L, Guo W. Overexpression of a cotton Annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol, 2015, 87: 47–67
[8]Li F G, Fan Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X.. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[9]Winicov I. New molecular approaches to improving salt tolerance in crop plants.Ann Bot, 1998, 82: 703–710
[10]李月, 许朋斐, 陈全家, 代培红, 刘超, 曲延英, 刘晓东. 棉花bZIP转录因子基因GhbZIP15的克隆与表达分析. 棉花学报, 2015, 27: 515–523
Li Y, Xu P F, Chen QJ, Dai P H, Liu C, Qu Y Y, Liu X D. Molecular cloning and expression of a bZIP transcription factor gene GhbZIP15 in cotton (Gossypium hirsutum L.). Cotton Sci, 2015, 27: 515–523 (in Chinese with English abstract)
[11]张新宇, 林书岱,张涛, 裴柳玲, 唐清, 刘峰, 刘永昌. 棉花C2H2类型锌指蛋白基因GhSIZ1的克隆及表达分析. 棉花学报, 2015, 27: 189–197
Zhang X Y, Lin S D, Zhang T, Pei L L,Tang Q, Liu F, Liu Y C. Cloning and expression analysis of GhSIZ1, encoding a C2H2 zinc finger protein in cotton (Gossypium hirsutum). Cotton Sci, 2015, 27: 189–197 (in Chinese with English abstract)
[12]Guo Y H, Yu Y P, Wang D, Wu C A, Yang G D, Huang J G, Zheng C C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol, 2009, 183: 62–75
[13]Jin L G, Li H, Liu J Y. Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol, 2010, 52: 485–495
[14]Meng C, Cai C, Zhang T, Guo, W Z. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci, 2009, 176: 352–359
[15]Yan H, Jia H, Chen X, Hao L, An H, Guo X. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol, 2014, 55: 2060–2076
[16]Guo J, Shi G, Guo X, Zhang L, Xu W, Wang Y, Su Z. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. Plant Sci, 2015, 238: 33–45
[17]Zhang X Y, Yao D X, Wang Q H, Xu W Y, Wei Q, Wang C C, Liu C L, Zhang C J, Yan H, Ling Y, Su Z, Li F G. mRNA-seq Analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One, 2013, 8: e54762
[18]Gouia H, Ghorbal M H, Touraine B. Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol, 1994, 105: 1409–1418
[19]Peng Z, He S P, Gong W F, Sun J L, Pan Z E, Xu F F, Lu YL, Du X M, Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genom, 2014, 15: 760
[20]Lam T W, Yiu S M, Kristiansen K, Wang J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966–1967
[21]Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621–628
[22]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995
[23]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency.Ann Statist, 2001, 29: 1165–1188
[24]Chao D Y, Luo Y H, Shi M, Luo D, Ling H X. Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res, 2005, 15: 796–810
[25]Guo P G, Baum M, Grando S, Ceccarelli S, Bai G H et al. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot, 2009, 60: 3531–3544
[26]李田, 孙景宽, 刘京涛. 植物转录因子家族在耐盐抗旱调控网络中的作用. 生命科学, 2015, 27: 217–227
Li T, Sun J K, Liu J T. Role of different transcription factor families in the regulatory networks of drought and salinity tolerance in plants.Chin Bull Life Sci, 2015, 27: 217–227 (in Chinese with English abstract)
[27]朱冬梅, 贾媛, 崔继哲, 付畅. 植物对盐胁迫应答的转录因子及其生物学特性. 生物技术通报, 2010, (4): 16–21
Zhu D M, Jia Y, Cui J Z, Fu C. Plant transcription factors in response to salt stress and its biological characteristics. Biotechnol Bull, 2010, (4): 16–21 (in Chinese with English abstract)
[28]莫纪波, 李大勇, 张慧娟, 宋凤鸣. ERF转录因子在植物对生物和非生物胁迫反应中的作用. 植物生理学报, 2001, 47 :1145–1154
Mo J B, Li D Y, Zhang H J, Song F M. Roles of ERF transcription factors in biotic and abiotic stress response in plants. Plant Physiol J, 2011, 47: 1145–1154 (in Chinese with English abstract)
[29]Guo Z J, Chen X J, Wu X L, Lin J Q, Xu P. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol, 2004, 55: 607–618
[30]Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Over-expression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781–3796
[31]Qiao Z X, Huang B, Liu J Y. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum). Biochim Biophys Acta (BBA)-Gene Regul Mechan, 2008, 1779: 122–127
[32]Puranik S, Sahu P P, Srivastava P S, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci, 2012, 17: 369–381
[33]Huang G Q, Li W, Zhou W, Zhang J M, Li D D, Gong S Y, Li X B. Seven cotton genes encoding putative NAC domain proteins are preferentially expressed in roots and in responses to abiotic stress during root development. Plant Growth Regul, 2013, 71: 101–112.
[34]李小兰, 胡玉鑫, 杨星, 于晓东, 李秋莉. 非生物胁迫相关NAC转录因子的结构及功能. 植物生理学报, 2013, 49: 1009–1017
Li X L, Hu Y X, Yang X, Yu X D, Li Q L. Structure and functions of NAC transcription factors involved in abiotic stress. Plant Physiol J, 2013, 49: 1009–1017 (in Chinese with English abstract)
[35]李蕾, 谢丙炎, 戴小枫, 杨宇红. WRKY转录因子及其在植物防御反应中的作用. 分子植物育种, 2005, 3: 401–408
Li L, Xie B Y Dai X F, Yang Y H. WRKY transcription factors and their roles in platt defense responses. Mol Plant Breed, 2005, 3: 401–408 (in Chinese with English abstract)
[36]Shi W, Hao L, Li J, Liu D, Guo X, Li H. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep, 2014, 33: 483–498
[37]Shi W, Liu D, Hao L, Wu C A, Guo X, Li H. GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tiss Organ Cul, 2014, 118: 17–32
[38]Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Guo X. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress Tolerance in transgenic Nicotiana benthamiana. PloS One, 2015, 10: e0143022
[39]Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723–1730
[40]Bailey D, O’Hare P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal, 2007, 9: 2305–2322
[41]Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family.Plant Cell, 2003, 15: 1749–1770
[42]Meng C M, Zhang T Z, Guo W Z. Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep, 2009, 27: 381–387
[43]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581
[44]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol General Genet, 1999, 261: 660–671
[45]Suo J, Liang X, Pu L, Zhang Y, Xue Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Bioph Acta (BBA)-Gene Struct Express, 2003, 1630: 25–34
[46]王诺菡,于霁雯,吴嫚, 马启峰, 李兴丽, 裴文锋, 李海晶, 黄双领, 张金发, 喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定. 作物学报, 2014, 40: 1540–1548
Wang N H,Yu J W, Wu M, Ma Q F, Li X L, Pei W F, Li H J, Huang S L, Zhang J F, Yu S X. Cloning, expression, and functional analysis of GhMYB0 gene from cotton (Gossypium hirsumtum L.). Acta Agron Sin, 2014, 40: 1540–1548 (in Chinese with English abstract)
[47]王雅琴,石淼,张新宇, 刘永昌,薛飞, 孙杰,李艳军. 棉花GhMYB113基因的克隆与表达分析. 西北植物学报, 2013, 33: 878–884
Wang Y Q, Shi M, Zhang X Y, Liu Y C, Xue F, Sun J, Li Y J. Cloning and expression analysis of GhMYB113 gene in Gossypium hirsutum. Acta Bot Boreali-Occident Sin, 2013, 33(5): 878–884 (in Chinese with English abstract)
[48]于月华, 倪志勇, 梁小莉, 刘真芳, 陈全家, 高文伟. 棉花转录因子基因GhMYB的克隆及特征分析. 棉花学报, 2015, 27: 31–38
Yu Y H, Ni Z Y, Liang X L, Liu Z F, Chen Q J, Gao W W. Cloning and characterization of a transcription factor gene GhMYB from Gossypium hirsuturm L. Cotton Sci, 2015, 27: 31–38 (in Chinese with English abstract)
[49]李菲, 柳展基, 王立国, 刘勤红, 刘任重. 棉花转录因子基因(GhMYB11)的克隆与表达分析. 农业生物技术学报, 2015, 23: 161–169
Li F, Liu Z J, Wang L G, Liu Q H, Liu R Z. Cloning and expression analysis of the transcription factor gene (GhMYB11) in Gossypium hirsutum L. J Agric Biotechnol, 2015, 23: 161–169 (in Chinese with English abstract)
[50]丁震乾, 陈天子, 刘廷利, 刘小双, 张保龙, 周兴根. 棉花干旱诱导MYB类转录因子GhRAX3的功能分析. 中国农业科学, 2015, 18: 3569–3579
Ding Z Q, Chen T Z, Liu T L, Liu X S, Zhang B L, Zhou X G. Function analysis of a drought stress induced MYB transcription factor GhRAX3 in cotton.Sci Agric Sin, 2015, 48: 3569–3579 (in Chinese with English abstract)

[1] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[2] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[3] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[4] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[5] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[6] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[7] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[8] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[9] Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO. Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties [J]. Acta Agronomica Sinica, 2018, 44(11): 1631-1639.
[10] Mao-Ni CHAO, Qing-Yu WEN, Zhi-Yong ZHANG, Gen-Hai HU, Jin-Bao ZHANG, Guo WANG, Qing-Lian WANG. Sequence Characteristics and Expression Analysis of Potassium Transporter Gene GhHAK5 in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2018, 44(02): 236-244.
[11] SHEN Chao,LI Ding-Guo,NIE Yi-Chun,LIN Zhong-Xu. QTL Mapping for Yield and Fiber Quality Traits Using Gossypium mustelinum Chromosome Segment Introgression Lines [J]. Acta Agron Sin, 2017, 43(12): 1733-1745.
[12] LYU You-Jun,YANG Wei-Jun,ZHAO Lan-Jie,YAO Jin-Bo,CHEN Wei,LI Yan,ZHANG Yong-Shan. Genome-wide Identification and Expression Analysis of SRO Genes Family in Gossypium hirsutum L. [J]. Acta Agron Sin, 2017, 43(10): 1468-1479.
[13] YANG Yan-Long,XIAO-Fei,XU Shou-Zhen,WANG Yu-Xuan,ZUOWen-Qing,LIANG Fu-Bin,ZHANG Wang-Feng. Development of Cotton Canopy Structure Characteristics of Cotton Varieties Grown in Different Decades in Northern Xinjiang [J]. Acta Agron Sin, 2017, 43(10): 1518-1526.
[14] CHEN Xu-Sheng,DI Jia-Chun,ZHOU Xiang-Yang,ZHAO Liang. Hormone Expression and Tp Gene Chromosomal Localization of Tall Plant Mutant from Upland Cotton [J]. Acta Agron Sin, 2017, 43(06): 935-939.
[15] HAN Ze-Gang,ZHAO Zeng-Qiang,HE Lan-Lan,CHAI Meng-Liang,LI Hui-Hui,ZHANG Wei. Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt [J]. Acta Agron Sin, 2015, 41(02): 228-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!