Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (11): 1658-1666.

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton

LI Yuan1, LI Ya-Bing2, HU Da-Peng1, WANG Jun1, HENG Li1, ZHANG Xiang1, CHEN Yuan1, CHEN De-Hua1,*   

  1. 1 Jiangsu Provincial Key Laboratory of Crops Genetics and Physiology / Yangzhou University, Yangzhou 225009, China; 2 State Key Laboratory of Cotton Biology / Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
  • Received:2017-02-22 Revised:2017-07-23 Online:2017-11-12 Published:2017-08-09
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471435, 31301263, 31671613), Jiangsu “Threeinnovation”Agricultural Project [SXGC(2014)317, (2016)320], the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Project of Planting Cotton Technology Standardization Research and Demonstration.

Abstract:

Using Bt cotton conventional cultivar Sikang 1 and hybrid Sikang 3 as test materials, the experiments of water stress at different levels (relative soil water capacity at 90%, 100%, and 2 cm waterlogging above the soil surface respectively) and 90% soil water capacity remained 24–120 hours were conducted to investigate the square Bt insecticidal protein expression and nitrogen metabolism in bud developmental stage. The soil waterlogging treatments with three levels reduced the square Bt insecticidal protein content by 36.5%, 42.1%, and 51.4% for conventional cultivar Sikang 1 and by 19.2%, 57.2%, and 64.5% for hybrid Sikang 3, respectively. The continuous stress of 96 h in the 90% soil water capacity treatment decreased the square Bt insecticidal protein content significantly, which was 20.8% for Sikang 1 and 17.6% for Sikang 3, the longer the stress sustained, the more the Bt toxin content declined. The soluble protein content, NR, GOT, GPT, GS, and GOGAT activities decreased, and the free amino acids content, peptidase and protease activities increased under different levels of soil waterlogging and continuous stress of 90% soil water capacity stress. Therefore, the reduced protein synthesis ability, and enhanced protein degradation ability may decrease the square soluble protein content including Bt insecticidal protein content, resulting in reduction of the square insect resistance.

Key words: Bt cotton, Water logging, Insecticidal protein, Nitrogen metabolism

[1] 郑继有. 对我国转基因抗虫棉品种选育的思考和建议. 中国棉花学会2007年年会论文汇编, 2007. pp 13–14
Zheng J Y. Consideration and suggestion on breeding of    transgenic Bt cotton varieties in China. In: Proceedings of the 2007 Annual Conference of China Cotton Association, 2007. pp 13–14 (in Chinese)
[2] James C. Preview: global status of commercialized biotech/GM crops. ISAAA Briefs, 2004, 32: 1–12
[3] 郭香墨, 范术丽, 王红梅, 严根土. 我国棉花育种技术的创新与成就. 棉花学报, 2007, 19: 323–330
Guo X M, Fan S L, Wang H M, Yan G T. Achievements of tech-nical innovation about cotton genetics and breeding in China. Cotton Sci, 2007, 19: 323–330 (in Chinese with English abstract)
[4] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青. 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006, 33(10): 2–5
Xia J Y, Zou K, Ma Z Q, Xia W S, Bai C Q. Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006, 33(10): 2–5 (in Chinese)
[5] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同. 棉花转基因技术研究. 山东科学, 2008, 21(3): 38–41
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T. A survey of cotton transgene technology. Shandong Sci, 2008, 21(3): 38–41 (in Chinese with English abstract)
[6] 李悦有, 翟黎芳, 卢川. 河北棉区的棉花生产现状及发展策略分析. 棉花学报, 2016, 38: 8–13
Li Y Y, Zhai L F, Lu C. Analysis of cotton production situation and development strategy in Hebei cotton area. Cotton Sci, 2016, 38: 8–13 (in Chinese with English abstract)
[7] James C. Global biotechnology / GM crops commercialization development trend in 2015. China Biotechnol, 2016, 36: 1–11
[8] 郑志明, 黄磊, 袁连卿, 孙玉德. 转基因抗虫棉的特性及病虫草害综合防治技术. 北京: 中国社会出版社, 2005. pp 231–235
Zheng Z M, Huang L, Yuan L Q, Sun Y D. The Characteristics of Transgenic Insect-resistant Cotton and Pests Integrated Control Techniques. Beijing: China Society Press, 2005. pp 231–235 (in Chinese)
[9] 张社梅. 国产转基因棉花科研与应用的经济分析. 中国农业科学院博士学位论文, 北京, 2007
Zhang S M. Economic Analysis on Chinese Domestic Genetically Modified Cotton R&D Investment and Application. PhD Disser-tation of Chinese Academy of Agricultural Sciences, Beijng, China, 2007 (in Chinese with English abstract)
[10] 温四民, 董合忠, 辛呈松. Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, (1): 9–12
Wen S M, Dong H Z, Xin C S. Research progress on the differen-tial expression of insect resistance of Bt cotton. J Henan Agric Sci, 2007, (1): 9–12 (in Chinese)
[11] Jagger R. The company view. Aust Cotton Grower, 1997, (1): 26
[12] Kaiser J. Pest overwhelm Bt cotton crop. Science, 1996, 273: 423
[13] 王永慧, 陈建平, 蔡立旺, 张萼, 戚永奎. 气象因子对Bt棉抗虫性表达影响的研究进展. 安徽农业科学, 2011, 39: 20530–20531
Wang Y H, Chen J P, Cai L W, Zhang E, Qi Y K. Research pro-gress in effects of meteorological factors on pest resistance ex-pression of Bt cotton. J Anhui Agric Sci, 2011, 39: 20530–20531 (in Chinese with English abstract)
[14] 王家宝, 王留明, 沈法富, 张学坤, 杨静, 刘任重. 环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响. 山东农业科学, 2000, (6): 4–6
Wang J B, Wang L M, Shen F F, Zhang X K, Yang J, Liu R Z. Effect of environment elements on Bt-protein content in trans-genic Bt cotton. Shandong Agric Sci, 2000, (6): 4–6 (in Chinese with English abstract)
[15] 吴敬音, 何小兰, 束春娥, 陈松, 傅春霞, 黄骏麒. 土壤淹水对Bt棉抗棉铃虫能力的影响. 江苏农业学报, 1997, 13(4): 231–233
Wu J Y, He X L, Su C E, Chen S, Fu C X, Huang J Q. Influence of waterlogging on the bollworm resistance of Bt cotton. Jiangsu J Agric Sci, 1997, 13(4): 231–233 (in Chinese with English abstract)
[16] 王留明, 王家宝, 沈法富, 张学坤, 刘任重. 渍涝与干旱对不同转Bt基因抗虫棉的影响. 棉花学报, 2001, 13: 87–90
Wang L M, Wang J B, Shen F F, Zhang X K, Liu R Z. Influences of waterlogging and drought on different transgenic Bt cotton cultivars. Cotton Sci, 2001, 13: 87–90 (in Chinese with English abstract)
[17] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Aca-demic Press, 1980. pp 169–202
[18] 赵鹏, 何建国, 熊淑萍, 马新明. 氮素形态对专用小麦旗叶酶活性及籽粒蛋白质和产量的影响. 中国农业大学学报, 2010, 15(3): 29–34
Zhao P, He J G, Xiong S P, Ma X M. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. J China Agric Univ, 2010, 15(3): 29–34 (in Chinese with English abstract)
[19] 阎桂萍, 马凤鸣, 李文华. 甜菜氨同化途径的研究. 东北农业大学学报, 1999, 30(4): 318–323
Yan G P, Ma F M, Li W H. Studies on the way of ammonia                                    assimilation in sugar beet. J Northeast Agric Univ, 1999, 30(4): 318–323 (in Chinese)
[20] Hallikeri S S, Halemani H L, Katageri I S, Patil B C, Patil V C, Palled Y B. Influence of sowing time and moisture regimes on cry protein concentration and related parameters of Bt-cotton. Karnataka J Agric Sci, 2009, 22: 995–1000
[21] Ian J R. Effect of genotype, edaphic, environmental conditions, and agronomic practices on CryIAc protein expression in trans-genic cotton. J Cotton Sci, 2006, 10: 252–262
[22] 王永慧, 陈建平, 蔡立旺, 张祥, 陈源, 陈德华. 温湿度处理对Bt棉杀虫蛋白表达的影响. 棉花学报, 2013, 25: 63–67
Wang Y H, Chen J P, Cai L W, Zhang X, Chen Y, Chen D H.               Effect of combination stress of temperature and humidity on in-secticidal protein expression of Bt transgenic cotton. Cotton Sci, 2013, 25: 63–67 (in Chinese with English abstract)
[23] 束春娥, 孙洪武, 孙以文, 柏立新, 黄骏麒, 李胜. 转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响. 棉花学报, 1998, 10: 131–135
Shu C E, Sun H W, Sun Y W, Bai L X, Huang J Q, Li S. Toxic response of cotton bollworm to various parts of Bt-transgenic cotton in different growing stages. Acta Gossypii Sin, 1998, 10: 131–135 (in Chinese with English abstract)
[24] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. Effect of intro-ducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Res, 2004, 87: 1–9
[25] Stam M, Mol J N M, Kooter J M. The silence of genes in trans-genic plants. Ann Bot, 1997, 79: 3–12
[26] Finnegan E J, Liewellyn D J, Fitt G P. What’s happening to the expression of the insect protection in field-grown ingard cotton? In: 11th Australian Cotton Conference, 2002. pp 291–297
[27] Helen E H. Season-long monitoring of transgenic cotton plants development of an assay for the quantification of Bacillus thu¬ringiensis insecticidal crystal protein. In: 10th Australian Cotton Conference, 2000. pp 331–335
[28] Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. The effect of high temperature on the insecticidal properties of Bt cotton. En-viron Exp Bot, 2005, 53: 333–342
[29] Zhang X, Ye G Y, Zhang L, Wang Y H, Chen Y, Chen D H. The im-pact of introducing the Bacillus thuringiensis gene into cotton on boll nitrogen metabolism. Environ Exp Bot, 2007, 61: 175–180
[30] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15: 288–292
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K. The effects of the high temperature stress on the leaf Bt protein content and ni-trogen metabolism of Bt cotton. Cotton Sci, 2003, 15: 288–292 (in Chinese with English abstract)
[31] 吕春花. 高温胁迫对转Bt基因棉生殖器官Bt杀虫蛋白表达量及氮代谢的影响. 扬州大学硕士学位论文, 江苏扬州, 2013
Lyu C H. The Effect of High Temperature on the Insecticidal Properties and Nitrogen Metabolism of Bt Cotton Reproductive Organ. MS Thesis of Yangzhou University, Yangzhou, China, 2013 (in Chinese with English abstract)

[1] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[2] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[3] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
[4] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[5] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[6] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[7] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[8] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[9] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
[10] HENG Li,HU Da-Peng,WANG Gui-Xia,LYU Chun-Hua,ZHANG Xiang,CHEN Yuan,CHEN De-Hua. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton [J]. Acta Agron Sin, 2016, 42(09): 1374-1380.
[11] ZHOU Wei-Xia,DONG Peng-Fei,WANG Xiu-Ping,LI CHAO-Hai. Effects of Low-light Stress on Kernel Setting, and Carbon and Nitrogen Metabolism of Different Maize (Zea mays L.) Genotypes [J]. Acta Agron Sin, 2013, 39(10): 1826-1834.
[12] CHEN Yuan,GU Chao,WANG Gui-Xia,Lü Chun-Hua,LIU Xiao-Fei,ZHANG Xiang,CHEN De-Hua. Effect on Stresses of 18°C and Different Relative Humidities on Bt Protein Expression at Squaring Stage in Bt Cotton [J]. Acta Agron Sin, 2013, 39(01): 184-189.
[13] ZHAO Feng, ZHANG Wei-Jian, ZHANG Xiu-Fu, WANG Dan-Yang, XU Chun-Mei. Effect of Continuous Aeration on Growth and Activity of Enzymes Related to Nitrogen Metabolism of Different Rice Genotypes at Tillering Stage [J]. Acta Agron Sin, 2012, 38(02): 344-351.
[14] CAO Zhen-Zhen, ZHANG Ji-Fang, HUI Ke-Su, YANG Wei-Li, LIU Guang-Kuai, CHENG Fang-Min. Response of Some Key Enzyme Activities Involved in Nitrogen Metabolism to High Temperature at Filling Stage and Its Relation to Storage Protein Accumulation in Rice Grain [J]. Acta Agron Sin, 2012, 38(01): 99-106.
[15] YUN Fei, LIU Guo-Shun*,SHI Hong-Zhi. Interaction Effects of Light Intensity and Nitrogen Supply on Gas Exchange, Some Enzyme Activities in Carbon-Nitrogen Metabolism and Quality in Flue-Cured Tobacco [J]. Acta Agron Sin, 2010, 36(3): 508-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!