Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (12): 1774-1783.doi: 10.3724/SP.J.1006.2017.01774

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Resistance Evaluation to Eight Phytophthora sojae Isolates for Major Soybean Cultivars in Huang-Huai-Hai Rivers Valley

LI Xiao-Na1,2, SUN Shi2,**, ZHONG Chao2,HAN Tian-Fu1,2,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Key Laboratory of Soybean Biology (Beijing) / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-04-12 Revised:2017-07-23 Online:2017-12-12 Published:2017-08-10
  • Contact: 韩天富, E-mail: hantianfu@caas.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471521), the China Agriculture Research System (CARS-04), the Special Fund for Agro-Scientific Research in the Public Interest (201303018), and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Abstract:

With the application of wheat stubble no-tillage cultivation technology, the occurrence rate of phytophthora root rot of soybean is getting higher in the Huang-Huai-Hai Rivers Valley. Therefore, it is crucial to investigate the resistance of the widely-grown soybean cultivars to phytophthora root rot and to screen disease-resistant resources for soybean improvement. In the current study, a total of 140 soybean cultivars, widely-grown in Huang-Huai-Hai Rivers Valley since the 1950s, were investigated for their response to eight strains of Phytophthora sojae through the hypocotyl inoculation method. Six cultivars were susceptible to all eight strains, and 134 or 95.7% of the identified cultivars were resistant to one to eight strains of Phytophthora sojae. Among the cultivars, 83 or 59.3% were resistant to more than six Phytophthora sojae strains, and showed 65 reaction types identified by comparing with the reaction types of 14 reference cultivars. Five reaction types produced by 19 cultivars were the same as those of the known single gene or two gene combinations, and 60 reaction types produced by 115 cultivars were different from those controlled by the known single gene or two gene combinations, suggesting that there were novel resistant genes or gene combinations. The research results are available for selecting parents to breed new elite soybean cultivars with pyramided of resistant genes and excellent agronomic performances.

Key words: Soybean, Phytophthora root rot, Phytophthora sojae, Resistance gene, Gene postulation

[1]王幸, 吴存祥, 齐玉军, 徐泽俊, 王宗标, 韩天富. 麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响. 中国农业科学, 2016, 49: 1453–1465 Wang X, Wu C X, Qi Y J, Xu Z J, Wang Z B, Han T F. Effects of straw management and sowing methods on soybean agronomic traits and soil physical properties. Sci Agric Sin, 2016, 49: 1453–1465 (in Chinese with English abstract) [2]罗永藩. 我国少耕与免耕技术推广应用情况与发展前景. 耕作与栽培, 1991, (2): 1–7 Luo Y F. The popularization and application of less tillage and no tillage technology in China. GENGZUO YU ZAIPEI, 1991, (2): 1–7 (in Chinese) [3]田慧, 谭周进, 屠乃美, 李建国, 肖启明. 少免耕土壤生态学效应研究进展. 耕作与栽培, 2006, (5): 10–12 Tian H, Tan Z J, Tu N M, Li J G, Xiao Q M. Research progress on soil ecological effects of no tillage. GENGZUO YU ZAIPEI, 2006, (5): 10–12 (in Chinese) [4]朱振东, 王晓鸣, 戴法超. 大豆疫霉根腐病在我国的发生及防治对策. 植物保护, 1999, 25: 47–49 Zhu Z D, Wang X M, Dai F C. Occurrence and control of phytophthora root rot of soybean in China. Plant Prot, 1999, 25: 47–49 (in Chinese) [5]Sun J T, Li L H, Zhao J M, Huang J, Yan Q, Xing H, Guo N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max(L.) Merr.]. Theor Appl Genet, 2014, 127: 913–919 [6]Sugimoto T, Kato M, Yoshida S, Matsumoto I, Kobayashi T, Kaga A, Hajika M, Yamamoto R, Watanabe K, Aino M, Matoh T, Walker D R, Biggs A R, Ishimoto M. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci, 2012, 61: 511–522 [7]Weng C, Yu K, Anderson T R, Poysa V. Mapping genes conferring resistance to phytophthora root rot of soybean, Rps1a and Rps7. J Hered, 2001, 92: 442–446 [8]Burnham K D, Dorrance A E, Francis D M, Fioritto R J, Martin S K St. Rps8, a new locus in soybean for resistance to Phytophthora sojae. Crop Sci, 2003, 43: 101–105 [9]Gordon S G, Martin S K St, Dorrance A E. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci, 2006, 46: 168–173 [10]Wu X L, Zhang B Q, Sun S, Zhao J M, Yang F, Guo N, Gai J Y, Xing H. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Sci Agric Sin, 2011, 10: 1506–1511 [11]Zhang J Q, Xia C J, Duan C X, Sun S L, Wang X M, Wu X F, Zhu Z D. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE, 2013, 8: e69799 [12]朱振东, 霍云龙, 王晓鸣, 黄俊斌, 武小菲. 一个抗大豆疫霉根腐病新基因的分子鉴定. 作物学报, 2007, 33: 154–157 Zhu Z D, Huo Y L, Wang X M, Huang J B, Wu X F. Molecular identification of a novel Phytophthora resistance gene in soybean. Acta Agron Sin, 2007, 33: 154–157 (in Chinese with English abstract) [13]Sun S, Wu X L, Zhao J M, Wang Y C, Tang Q H, Yu D Y, Gai J Y, Xing H. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed, 2011, 130: 139–143 [14]范爱颖, 王晓鸣, 方小平, 武小菲, 朱振东. 大豆品种豫豆25抗疫霉根腐病基因的鉴定. 作物学报, 2009, 35: 1844–1850 Fan A Y, Wang X M, Fang X P, Wu X F, Zhu Z D. Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou25. Acta Agron Sin, 2009, 35: 1844–1850 (in Chinese with English abstract) [15]姚海燕, 王晓鸣, 武小菲, 肖炎农, 朱振东. 大豆品种早熟18抗疫霉根腐病基因的SSR分子标记. 植物遗传资源学报, 2010, 11: 213–217 Yao H Y, Wang X M, Wu X F, Xiao Y N, Zhu Z D. Molecular mapping of Phytophthora resistance gene in soybean cultivar Zaoshu18. J Plant Genet Resour, 2010, 11: 213–217 (in Chinese with English abstract) [16]于安亮, 徐鹏飞, 王金生, 张淑珍, 吴俊江, 李文滨, 陈维元, 李宁辉, 范素杰, 王欣, 姜良宇. 大豆品种绥农10抗疫霉根腐病遗传分析及抗病基因的SSR标记. 中国油料作物学报, 2010, 32: 462–466 Yu A L, Xu P F, Wang J S, Zhang S Z, Wu J J, Li W B, Chen W Y, Li N H, Fan S J, Wang X, Jiang L Y. Genetic analysis and SSR mapping of gene resistance to Phytophthora sojae race 1 in soybean cv Suinong10. Chin J Oil Crop Sci, 2010, 32: 462–466 (in Chinese with English abstract) [17]武晓玲, 周斌, 孙石, 赵晋铭, 陈受宜, 盖钧镒, 邢邯. 大豆对大豆疫霉菌株Pm14抗性的遗传分析及基因定位. 中国农业科学, 2011, 44: 456–460 Wu X L, Zhou B, Sun S, Zhao J M, Chen S Y, Gai J Y, Xing H. Genetic analysis and mapping of resistance to Phytophthora sojae of Pm14 in soybean. Sci Agric Sin, 2011, 44: 456–460 (in Chinese with English abstract) [18]Zhang J Q, Xia C J, Wang X M, Duan C X, Sun S L, Wu X F, Zhu Z D. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet, 2013, 126: 1555–1561 [19]Lin F, Zhao M X, Ping J Q, Johnson A, Zhang B, Abney T S, Hughes T J, Ma J X. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet, 2013, 126: 2177–2185 [20]Ping J Q, Fitzgerald J C, Zhang C B, Lin F, Bai Y H, Wang D C, Aggarwal R, Rehman M, Crasta O, Ma J X. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet, 2016, 129: 445–451 [21]Sahoo D K, Abeysekara N S, Cianzio S R, Robertson A E, Bhattacharyya M K. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes, PLoS ONE, 2017, 12: e0169950 [22]Li Y P, Sun S L, Zhong C, Wang X M, Wu X F, Zhu Z D. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor Appl Genet, 2017, doi: 10.1007/s00122-017-2883-7 [23]Cheng Y B, Ma Q B, Ren H L, Xia Q J, Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor Appl Genet, 2017, 130: 1041–1051 [24]Schmitthenner A F. Problems and progress in control of phytophthora root rot of soybean. Plant Dis, 1985, 69: 362–368 [25]Yang B, Wang Q Q, Jing M F, Guo B D, Wu J W, Wang H N, Wang Y, Lin L, Wang Y, Ye W W, Dong S M, Wang Y C. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytol, 2017, 214: 361–375 [26]Lee S, Mian M A R, Sneller C H, Wang H H, Dorrance A E, McHale L K. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet, 2014, 127: 429–444 [27]朱振东, 王化波, 王晓鸣, 武小菲. 黑龙江省主要栽培大豆品种(系)对大豆疫霉根腐病的多抗性评价. 植物遗传资源学报, 2004, 5: 22–25 Zhu Z D, Wang H B, Wang X M, Wu X F. Response of soybean cultivars or lines developed in Heilongjiang province to five strains of Phytophthora sojae. J Plant Genet Resour, 2004, 5: 22–25 (in Chinese with English abstract) [28]朱振东, 王晓鸣, 常汝镇, 马淑梅, 武小菲, 田玉兰. 黑龙江省大豆疫霉菌生理小种鉴定及大豆种质的抗性评价. 中国农业科学, 2000, 33: 62–67 Zhu Z D, Wang X M, Chang R Z, Ma S M, Wu X F, Tian Y L. Identification of race of Phytophthora sojae and reaction of soybean germplasm resources in Heilongjiang Province. Sci Agric Sin, 2000, 33: 62–67 (in Chinese with English abstract) [29]Kyle D E, Nickell C D, Nelson R L, Pedersen W L. Response of soybean accessions from provinces in southern China to Phytophthora sojae. Plant Dis, 1998, 82: 555–559 [30]孙石, 赵晋铭, 武晓玲, 郭娜, 王源超, 盖钧镒, 邢邯. 黄淮海地区大豆种质对疫霉根腐病的抗性分析. 大豆科学, 2008, 27: 465–470 Sun S, Zhao J M, Wu X L, Guo N, Wang Y C, Gai J Y, Xing H. Resistance of soybean gemplasm to phytophthora in Huanghuai Valley. Soybean Sci, 2008, 27: 465–470 (in Chinese with English abstract) [31]Lohnes D G, Nickell C D, Schmitthenner A F. Origin of soybean alleles for Phytophthora resistance in China. Crop Sci, 1996, 36: 1689–1692 [32]朱振东, 霍云龙, 王晓鸣, 黄俊斌, 武小菲. 大豆疫霉根腐病抗源筛选. 植物遗传资源学报, 2006, 7: 24–30 Zhu Z D, Huo Y L, Wang X M, Huang J B, Wu X F. Screening for resistance sources to phytophthora root rot in soybean. J Plant Genet Resour, 2006, 7: 24–30 (in Chinese with English abstract) [33]任海龙, 宋恩亮, 马启彬, 杨存义, 王瑞鹏, 马天翔, 唐玉娟, 年海. 南方三省(区)抗大豆疫霉根腐病野生大豆资源的筛选. 大豆科学, 2010, 29: 1012–1015 Ren H L, Song E L, Ma Q B, Yang C Y, Wang R P, Ma T X, Tang Y J, Nian H. Screening for resistance sources to phytophthora root rot in glycine sojae from three provinces of Southern China. Soybean Sci, 2010, 29: 1012–1015 (in Chinese with English abstract) [34]程艳波, 马启彬, 牟英辉, 谭志远, 吴鸿, 年海. 华南地区推广应用大豆品种对疫霉根腐病的抗性评价. 华南农业大学学报, 2015, 36: 69–75 Cheng Y B, Ma Q B, Mu Y H, Tan Z Y, Wu H, Nian H. Resistance evaluation of soybean varieties to phytophthora root rot in South China. Huanan J Agric Sci, 2015, 36: 69–75 (in Chinese with English abstract) [35]申宏波, 丁俊杰, 于永梅, 姚文秋, 顾鑫, 杨晓贺, 郑天琪, 赵海红. 2009年黑龙江省大豆新品系抗疫霉根腐病鉴定与评价. 大豆科学, 2010, 29: 1087–1090 Shen H B, Ding J J, Yu Y M, Yao W Q, Gu X, Yang X H, Zheng T Q, Zhao H H. Identification and evaluation on soybean lines resistant to phytophthora root rot from Heilongjiang province in 2009. Soybean Sci, 2010, 29: 1087–1090 (in Chinese with English abstract) [36]徐鹏飞, 姜良宇, 李文滨, 张淑珍, 陈维元, 吴俊江, 李岑, 邱丽娟, 常汝镇, 王金生. 黑龙江省大豆品种对大豆疫霉根腐病抗性评价及抗性基因推导. 中国油料作物学报, 2011, 33: 521–526 Xu P F, Jiang L Y, Li W B, Zhang S Z, Chen W Y, Wu J J, Li C, Qiu L J, Chang R Z, Wang J S. Screening on soybean cultivars resistance to Phytophthora sojae and genes postulation in Heilongjiang Province. Chin J Oil Crop Sci, 2011, 33: 521–526 (in Chinese with English abstract) [37]唐庆华, 崔林开, 李德龙, 戴婷婷, 阴伟晓, 董莎萌, 邢邯, 郑小波, 王源超. 黄淮地区大豆种质资源对疫霉根腐病的抗病性评价. 中国农业科学, 2010, 43: 2246–2252 Tang Q H, Cui L K, Li D L, Dai T T, Yin W X, Dong S M, Xing H, Zheng X B, Wang Y C. Resistance evaluation of soybean germplasm from Huanghuai valley to phytophthora root rot. Sci Agri Sin, 2010, 43: 2246–2252 (in Chinese with English abstract)

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[9] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[10] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!