Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (12): 1784-1790.doi: 10.3724/SP.J.1006.2017.01784

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Yield Components in Gossypium barbadense Chromosome Segment Introgression Lines Based on Gossypium hirsutum Background

ZHU Xie-Fei**, WANG Peng**, SI Zhan-Feng,ZHANG Tian-Zhen*   

  1. Cotton Institute, Nanjing Agricultural University / State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2016-12-31 Revised:2017-09-10 Online:2017-12-12 Published:2017-09-28
  • Supported by:

    This study was supported by China Agriculture Research System (CARS-18-01) and the National Key R&D Program (2016YFD0101400).

Abstract:

Cotton yield is divided into seed cotton yield and lint yield. High lint yield is always the primary breeding goal in cotton. Lint yield consists of three components, including boll number per plant, lint percentage and boll weight. Of them, lint percentage has the highest heritability and is a most important target in breeding for increasing lint yield. Selection of yield components such as boll number and boll weight is easily affected by environmental factors in temporary segregating populations. It is testified that it is one of efficient methods to map the yield component QTLs and develop the elite lines in molecular breeding by using chromosome segment introgression lines (CSILs). In the present study, we developed a set of CSILs using G. hirsutumacc TM-1 as a recurrent parent and G. barbadense cv. Hai 7124 as a non-recurrent parent through the molecular markers assisted-selection. Here, we identified 28 QTLs for yield components under seven environments. Much more QTLs were enriched on Dt subgenome than on At subgenome. The chromosome segments introgressed from G. barbadense have different effects on yields in G. hirsutum background. There were 16 QTLs showing positive additive effects, implying these chromosome segments introgressed from G. barbadense could be used to improve yield components, while 12 QTLs showing negative additive effects, decreasing yield components. Lint percentage in IL008 line anchored with the SSR markers NAU2573 and NAU3576 was significantly higher than that of the recurrent parent TM-1 under six environments. Therefore, the CSIL IL008 could be used in molecular breeding to improve the lint yield in G. hirsutum.

Key words: CSILs, Yield, QTL mapping, Additive Effect

[1]Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419–4424 [2]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 [3]Doi K, Wata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O. sativa L.). Rice Genet Newsl, 1997, 14: 39–41 [4]王立秋, 赵永锋, 薛亚东, 张祖新, 郑用琏, 陈景堂. 玉米衔接式单片段导入系群体的构建和评价. 作物学报, 2007, 33: 663–668 Wang L Q, Zhao Y F, Xue Y D, Zhang Z X, Zheng Y L, Chen J T. Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agron Sin, 2007, 33: 663–668 (in Chinese with English abstract) [5]Liu G M, Li W T, Zeng R Z, Zhang, G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci, 2003, 17:201-204 [6]Von K M, Wang H, Léon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeumvul gare ssp. spontaneum) as donor. Theor Appl Genet , 2004, 109: 1736–1745 [7]Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 248–358 [8]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang TZ. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314–331 [9]Kohel R J, Lewis C F, Richmond T R. Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Sci, 1970, 10: 670–671 [10]潘家驹. 棉花育种学. 中国农业出版社, 1998 Pan J J. Cotton Breeding. China Agriculture Press, 1998 (in Chinese) [11]Yang C, Guo W Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages for in G. barbadense L. Plant Sci, 2008, 174: 290–298 [12]Wang P, Ding Y Z, Lu Q X. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Sci Bull, 53: 1512–1517 [13]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104 [14]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100 [15]McCouch S R, Cho Y G, Yano M, Paule E, Blinstrue M, Morishima H M, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13 [16]Ren L H, Guo W Z, Zhang T Z. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Bot Sin, 2002, 44, 7: 815–820 [17]Wu M Q, Zhang X L, Nie Y C, He D H. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. J Genet Genomics, 2003, 30: 443–452 [18]Rong J K, Alex Feltus F, Waghmare V N, Pierce G J, Chee P W, Draye X, Saranga Y, Wright R J, Wilkins T A, May O L, Smith C W, Gannaway J R, Wendel J F, Paterson A H. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics, 2007, 176: 2577–2588 [19]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cot ton fiber quality. Theor Appl Genet, 2003, 6: 384–396 [20]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Genetic dissection of long staple fiber qualities in Gossypium barbadense using inter-specific chromosome segment introgression lines. Theor Appl Genet, 2012,124: 1415–1428 [21]Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’ . Breed Sci, 2005, 55: 65–73 [22]万建民. 作物分子设计育种. 作物学报, 2006, 32: 455–462 Wan J M. Perspectives of molecular design breeding in crops. Acta Agron Sin, 2006, 32: 455–462 [23]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476–484 [24]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL Mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. J Genet Genomics, 2007, 34: 35–45 [25]Cao Z B, Wang P, Zhu X F, Chen H, Zhang T Z. SSR marker assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theor Appl Genet, 2014, 127: 587–594

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!