Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 672-685.doi: 10.3724/SP.J.1006.2018.00672

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide Association Studies of Seed Germination Related Traits in Maize

Run-Miao TIAN1,**(), Xue-Hai ZHANG1,**, Ji-Hua TANG1, Guang-Hong BAI2, Zhi-Yuan FU1,*()   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2017-11-02 Accepted:2018-03-15 Online:2018-05-20 Published:2018-03-16
  • Contact: Run-Miao TIAN,Xue-Hai ZHANG,Zhi-Yuan FU E-mail:tianrunmiao@foxmail.com;fuzhiyuan2004@163.com
  • Supported by:
    This study was supported by the Regional Science Foundation of National Natural Science Foundation of China (31760389).

Abstract:

Germination is important for seed emergence, which has significant impact on maize yield. To reveal the genetic mechanism of maize seed germination, we investigated six traits related to seed germination using 467 diverse inbred lines. The genome-wide association studies (GWAS) between the six traits and 1.25M SNPs were implemented in three different models (Q model, K model, and Q+K model). The K model was much better than the other two models for weight before imbibition, volume before imbibition, weight after imbibition, volume after imbibition and volume of imbibition. While weight of imbibition trait could be well evaluated by Q+K model. In total, 15 SNPs were significantly associated with the six traits by the optimal model. These SNPs correspond to six QTLs, including five QTLs co-located in different biological replications. The six QTLs were located on chromosomes 3, 6, 7, and 10. The single SNP could explain 5.09%-7.85% variation of phenotype. Genes within or nearby most significant SNP were selected as candidates, and six candidate genes were identified for seed germination related traits in the six loci. Among these genes, GRMZM2G148411 encoding a TLD-domain calcium ion binding protein according to the annotations associated with weight after imbibition, volume after imbibition and volume of imbibition might be a signal molecule regulating seed germination and dormancy. The QTLs identified in this study are useful for developing functional markers and elucidating the genetic basis of seed germination.

Key words: maize, seed germination, genome-wide association study, candidate gene

Fig. 1

Frequency distribution of seed emergence traits Name of each trait is given in Table 1."

Table 1

Statistical analysis of seed germination traits"

性状
Trait
平均值±标准差
Mean± SD
变幅
Range
变异系数
CV (%)
峰度
Skewness
偏度
Kurtosis
W1 (g) 4.92±0.92 1.63-7.40 18.77 0.22 0.07
V1 (mL) 4.43±0.77 2.57-6.47 17.35 0.42 -0.03
W2 (g) 6.52±1.19 2.02-9.86 18.29 0.25 0.23
V2 (mL) 5.87±1.06 1.93-9.20 18.06 0.43 0.33
W3 (g) 1.61±0.35 0.38-2.72 21.77 0.55 0.54
V3 (mL) 1.44±0.41 0.35-2.76 28.41 0.25 -0.13

Table 2

ANOVA of seed germination traits"

性状
Trait
变异来源
Variation source
自由度
df
均方
MS
F
F-value
W1 材料Variety 475 2.56 52.99**
重复Repeat 2 0.11 2.27
误差Error 940 0.05
V1 材料Variety 475 1.77 14.50**
重复Repeat 2 0.96 7.85**
误差Error 941 0.12
W2 材料Variety 475 4.24 32.12**
重复Repeat 2 4.31 32.68**
误差Error 940 0.13
V2 材料Variety 475 3.35 19.35**
重复Repeat 2 0.33 1.93
误差Error 93 0.17
W3 材料Variety 475 0.36 8.28**
重复Repeat 2 4.02 92.23**
误差Error 934 0.04
V3 材料Variety 475 0.50 2.62**
重复Repeat 2 1.32 6.96**
误差Error 932 0.19

Table 3

Pearson correlation analysis of seed germination traits"

性状 Trait W1 V1 W2 V2 W3
V1 0.955**
W2 0.976** 0.956**
V2 0.935** 0.942** 0.966**
W3 0.675** 0.725** 0.821** 0.811**
V3 0.606** 0.543** 0.682** 0.793** 0.724**

Fig. 2

Quantile-quantile plots (QQ plots) of estimated -lg(P) from association analysis using three methods for seed emergence traits Detailed name of each trait was given in Table 1. The horizontal axis shows -lg transformed expected P-values, and the vertical axis shows -lg transformed observed P-values."

Fig. 3

Manhattan of GWAS for seed germination traits Name of each trait is given in Table 1. Black dotted line indicates the genome-wide significance threshold."

Fig 4

Manhattan of GWAS for seed germination traits (single round) Name of each trait is given in Table 1. R1: the first biological repeat; R2: the second biological repeat; R3: the third biological repeat. Black dotted line indicates the genome-wide significance threshold."

Table 4

Candidate genes and their anmotations of seed germination traits"

Table 5

SNPs associated with seed germination traits"

性状
Trait
重复
Repeat
候选位点
Locus
SNP 染色体
Chr.
物理位置
Position
P
P-value
贡献率
R2 (%)
W1 1 Chr4: 2865435-2865435? Chr4.S_2925435 4 2925435 7.76×10-7 8.33
Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 1.48×10-6 5.58
2 Chr10: 139810517-139870517 Chr10.S_139840517 10 139840517 1.87×10-6 9.60
W1 Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 4.34×10-7 6.10
Chr7.S_4828028 7 4828028 7.66×10-7 5.84
W2 1 Chr10: 6343038-6403038 Chr10.S_6373105 10 6373105 1.81×10-6 5.16
Chr10: 117510861-117630861 Chr10.S_117570861 10 117570861 1.16×10-6 5.21
Chr4: 2865435-2865435 Chr4.S_2925435 4 2925435 3.83×10-7 8.73
Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 1.57×10-6 5.54
2 Chr10: 6343038-6403038 Chr10.S_6373105 10 6373105 1.86×10-6 5.14
Chr3: 209027864-209147864 Chr3.S_209087864 3 209087864 1.58×10-6 9.50
Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.75×10-6 5.25
Chr10.S_6373105 10 6373105 1.50×10-6 5.27
Chr9: 144257637-144377637 Chr9.S_144308026 9 144308026 1.77×10-6 5.08
Chr9.S_144308098 9 144308098 2.01×10-6 5.05
Chr9.S_144309854 9 144309854 1.77×10-6 5.08
Chr9.S_144309860 9 144309860 3.69×10-7 5.77
W2 Chr9.S_144317637 9 144317637 2.21×10-7 6.56
Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.86×10-6 5.17
Chr10.S_6373105 10 6373105 1.16×10-6 5.34
W3 1 Chr1: 206063394-206183394 Chr1.S_206123394 1 206123394 1.55×10-6 5.31
3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.01×10-7 5.92
Chr10.S_6373105 10 6373105 1.75×10-8 6.60
Chr2: 152687771-152807771 Chr2.S_205719834 2 205719834 6.26×10-7 7.05
Chr2.S_205770041 2 205770041 5.71×10-7 5.02
Chr2.S_205771072 2 205771072 5.71×10-7 5.02
Chr2.S_205771170 2 205771170 5.71×10-7 5.02
Chr2.S_205771560 2 205771560 5.71×10-7 5.02
Chr2.S_205771697 2 205771697 5.71×10-7 5.02
Chr2.S_205772111 2 205772111 5.71×10-7 5.02
Chr2.S_205773201 2 205773201 5.71×10-7 5.02
Chr2.S_205774142 2 205774142 5.71×10-7 5.02
Chr5:152687771-152807771 Chr5.S_152747771 5 152747771 4.70×10-7 8.78
Chr6: 95574386-95634386 Chr6.S_98573207 6 98573207 4.22×10-7 5.78
Chr9: 26957278-27077278 Chr9.S_27017278 9 27017278 1.47×10-6 5.13
W3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 3.22×10-9 8.06
Chr10.S_6373105 10 6373105 5.75×10-9 7.73
V1 1 Chr4: 2865435- 2865435? Chr4.S_2925435 4 2925435 8.89×10-7 8.44
Chr6: 6778454-6838454 Chr6.S_6808454 6 6808454 1.38×10-6 8.07
2 Chr10: 139780517-139900517 Chr10.S_139840517 10 139840517 3.47×10-7 10.56
Chr9: 144257637- 144377637 Chr9.S_144309860 9 144309860 1.60×10-6 5.12
3 Chr6: 95574386-95634386 Chr6.S_95604386 6 95604386 8.22×10-7 5.32
Chr6.S_95604517 6 95604517 1.42×10-6 5.08
Chr6.S_95604625 6 95604625 1.42×10-6 5.08
性状
Trait
重复
Repeat
候选位点
Locus
SNP 染色体
Chr.
物理位置
Position
P
P-value
贡献率
R2 (%)
Chr6.S_95604950 6 95604950 1.11×10-6 5.20
Chr6.S_95605307 6 95605307 1.21×10-6 5.14
Chr6.S_95605330 6 95605330 1.10×10-6 5.22
Chr6.S_95605331 6 95605331 1.95×10-6 5.04
Chr6.S_95605458 6 95605458 1.21×10-6 5.14
Chr6.S_95605541 6 95605541 1.21×10-6 5.14
Chr8: 14037401-14157401 Chr8.S_14097401 8 14097401 1.93×10-6 5.71
V1 Chr6: 6778454-6838454 Chr6.S_6808454 6 6808454 2.01×10-6 7.85
Chr6: 95574386-95634386 Chr6.S_95604386 6 95604386 8.76×10-7 5.28
Chr6.S_95604517 6 95604517 1.31×10-6 5.10
Chr6.S_95604625 6 95604625 1.31×10-6 5.10
Chr6.S_95604950 6 95604950 1.08×10-6 5.19
Chr6.S_95605307 6 95605307 1.14×10-6 5.16
Chr6.S_95605330 6 95605330 1.03×10-6 5.23
Chr6.S_95605331 6 95605331 1.67×10-6 5.09
Chr6.S_95605458 6 95605458 1.14×10-6 5.16
Chr6.S_95605541 6 95605541 1.14×10-6 5.16
V2 1 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 5.73×10-7 5.73
Chr4: 2865435-2865435 Chr4.S_2925435 4 2925435 1.49×10-6 7.54
Chr4: 185676597-185796597 Chr4.S_185736597 4 185736597 5.59×10-7 7.89
2 Chr10: 6147016-6267016 Chr10.S_6207016 10 6207016 1.14×10-6 8.84
V3 1 Chr2: 182455178-182575178 Chr2.S_182515178 2 182515178 9.03×10-7 5.98
Chr7: 145940024-146000024 Chr7.S_145970024 7 145970024 4.26×10-7 5.75
2 Chr1: 262661257-262781257 Chr1.S_262721257 1 262721257 1.59×10-6 5.55
Chr5: 213497149-213617149 Chr5.S_213557149 5 213557149 8.90×10-7 5.68
3 Chr7: 95428593-95548593 Chr7.S_95488593 7 95488593 1.05×10-6 7.48
Chr7.S_95488613 7 95488613 1.43×10-6 6.80
V3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.60×10-6 5.21
Chr3: 197628474-197688474 Chr3.S_197658474 3 197658474 1.72×10-6 5.93
Chr7: 145940024-146000024 Chr7.S_145970024 7 145970024 1.70×10-6 5.13
[1] Ellis R H.Seed and seedling vigor in relation to crop growth and yield.Plant Growth Regul, 1992, 11: 249-255
doi: 10.1007/BF00024563
[2] Candela H, Hake S.The art and design of genetic screens: maize.Nat Rev Genet, 2008, 9: 192-203
doi: 10.1038/nrg2291 pmid: 18250623
[3] Below F E, Seebauer J R, Uribelarrea M, Schneerman M C, Moose S P.Physiological changes accompanying long-term selection for grain protein in maize. In: Janick J ed. Plant Breeding Reviews. New York: John Wiley & Sons, 2004. pp 133-151
doi: 10.1002/9780470650240.ch7
[4] Klein R J, Zeiss C, Chew E Y, Tsai J Y, Sackler R S, Haynes C, Henning A K, SanGiovanni J P, Mane S M, Mayne S T, Bracken M B, Ferris F L, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308: 385-389
doi: 10.1126/science.1109557 pmid: 15761122
[5] Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 2010, 465: 627-631
[6] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B.Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39
doi: 10.1038/ng.1018 pmid: 22138690
[7] Xiao Y J, Liu H J, Wu L J, Warburton M, Yan J B.Genome-wide association studies in maize: praise and stargaze.Mol Plant, 2017, 10: 359-374
doi: 10.1016/j.molp.2016.12.008 pmid: 28039028
[8] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B.Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43-50
doi: 10.1038/ng.2484 pmid: 23242369
[9] Liu H J, Luo X, Niu L Y, Xiao Y J, Chen L, Liu J, Wang X G, Jin M L, Li W Q, Zhang Q H, Yan J B.Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize.Mol Plant, 2017, 10: 414-426
doi: 10.1016/j.molp.2016.06.016 pmid: 27381443
[10] Huang J, Zhang J H, Li W Z, Hu W, Duan L C, Feng Y Z, Qiu F Z, Yue B.Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize.J Integr Plant Biol, 2013, 55: 735-744
doi: 10.1111/jipb.v55.8
[11] Shi Y Y, Gao L L, Wu Z C, Zhang X J, Wang M M, Zhang C S, Zhang F, Zhou Y L, Li Z K.Genome-wide association study of salt tolerance at the seed germination stage in rice.BMC Plant Biol, 2017, 17: 92
doi: 10.1186/s12870-017-1044-0 pmid: 5450148
[12] Kan G Z, Zhang W, Yang W M, Ma D Y, Zhang D, Hao D R, Hu Z B, Yu D Y.Association mapping of soybean seed germination under salt stress.Mol Genet Genomics, 2015, 290: 2147-2162
doi: 10.1007/s00438-015-1066-y pmid: 26001372
[13] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination.New Phytol, 2006, 171: 501-523
doi: 10.1111/nph.2006.171.issue-3
[14] Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H.Proteomic analysis of heterosis during maize seed germination.Proteomics, 2011, 11: 1462-1472
doi: 10.1002/pmic.201000481 pmid: 21365753
[15] Hu S D, Lübberstedt T, Zhao G W, Lee M.QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population.PLoS One, 2016, 11: e0152795
doi: 10.1371/journal.pone.0152795 pmid: 4816396
[16] Han Z P, Ku L X, Zhang Z Z, Zhang J, Guo S L, Liu H V, Zhao R F, Ren Z Z, Zhang L K, Su H H, Dong L, Chen Y H.QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions.PLoS One, 2014, 9: e92535
doi: 10.1371/journal.pone.0092535 pmid: 3961396
[17] Yazdanpanah F, Hanson J, Hilhorst H, Bentsink L.Differentially expressed genes during the imbibition of dormant and after- ripened seeds—a reverse genetics approach.BMC Plant Biol, 2017, 17: 151-162
doi: 10.1186/s12870-017-1098-z pmid: 28893189
[18] Li Y S, Yuan F, Wen Z H, Li Y H, Wang F, Zhu T, Zhuo W Q, Jin X, Wang Y D, Zhao H P, Pei Z M, Han S C.Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol, 2015, 15: 261-273
doi: 10.1186/s12870-015-0653-8 pmid: 4624379
[19] Noblet A, Leymarie J, Bailly C.Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci Rep, 2017, 7: 8886
doi: 10.1038/s41598-017-08904-z pmid: 28827663
[20] Deng M, Li D Q, Luo J Y, Xiao Y J, Liu H J, Pan Q C, Zhang X H, Jin M L, Zhao M C, Yan J B.The genetic architecture of amino acids dissection by association and linkage analysis in maize.Plant Biotechnol J, 2017, 15: 1250-1263
doi: 10.1111/pbi.12712 pmid: 5595712
[21] Wang M, Yan J B, Zhao J R, Song W, Zhang X B, Xiao Y N, Zheng Y L.Genome-wide association study (GWAS) of resistance to head smut in maize.Plant Sci, 2012, 196: 125-131
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907
[22] Batak I, Devic M, Giba Z, Grubisic D, Poff K L, Konjevic R.The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res, 2002, 12: 253-259
[23] Bethke P C, Gubler F, Jacobsen J V, Jones R L.Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide.Planta, 2004, 219: 847-855
[24] Bethke P C, Libourel I G, Reinohl V, Jones R L.Sodium nitroprusside, cyanide, nitrite and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner.Planta, 2006, 223: 805-812
doi: 10.1007/s00425-005-0116-9 pmid: 16151848
[25] Sarath G, Bethke P C, Jones R, Baird L M, Hou G, Mitchell R B.Nitric oxide accelerates seed germination in warm-season grasses.Planta, 2006, 223: 1154-1164
doi: 10.1007/s00425-005-0162-3 pmid: 16369800
[26] Fontaine O, Huault C, Pavis N, Billard J P.Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity.Plant Physiol Biochem, 1994, 32: 677-683
[27] El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy.Plant Signal Behav, 2008, 3: 175-182
doi: 10.4161/psb.3.3.5539 pmid: 2634111
[28] Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M.A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination.PLoS One, 2015, 10: e0143173
doi: 10.1371/journal.pone.0143173 pmid: 26579718
[29] Baek D, Cha J Y, Kang S, Park B, Lee H J, Hong H, Chun H J, Kim D H, Kim M C, Lee S Y, Yun D J.The Arabidopsisa zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress.Front Plant Sci, 2015, 6: 963
doi: 10.3389/fpls.2015.00963 pmid: 4631831
[30] Joseph M P, Papdi C, Kozma-Bognár L, Nagy I, López-Carbonell M, Rigó G, Koncz C, Szabados L.The Arabidopsis ZINC FINGER PROTEIN3 interferes with abscisic acid and light signaling in seed germination and plant development.Plant Physiol, 2014, 165: 1203-1220
doi: 10.1104/pp.113.234294 pmid: 24808098
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[7] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[8] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!