Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1212-1220.doi: 10.3724/SP.J.1006.2018.01212
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
Fei LI1(),Liang LIU1,Hao ZHANG2,Qing-Tao WANG3,Li-Li GUO1,Li-Hua HAO1,*(),Xi-Xi ZHANG1,Xu CAO1,Wei-Jia LIANG1,Yun-Pu ZHENG1,*()
[1] | IPCC. Intergovernmental panel on climate change (2013) summary for policymakers. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Bo-schung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp 225-248. |
[2] | Kim H Y, Lieffering M, Kobayashi K, Okada M, Shu M . Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biol, 2003,9:826-837 |
[3] | 李萍, 郝兴宇, 杨宏斌, 林而达 . 大气CO2浓度升高对绿豆生长发育与产量的影响. 核农学报, 2011,25:358-362 |
Li P, Hao X Y, Yang H B, Lin E D . Effects of air CO2 enrichment on growth and yield of mung bean. J Nucl Agric Sci, 2011,25:358-362 (in Chinese with English abstract) | |
[4] | 于显枫, 张绪成, 王红丽 . 高浓度CO2下氮素对小麦叶片干物质积累及碳氮关系的影响. 核农学报, 2012,26:1058-1063 |
Yu X F, Zhang X C, Wang H L . Effects of nitrogen on the dry matter accumulation, carbon and nitrogen metabolism of wheat leaves under elevated atmospheric CO2 concentration. J Nucl Agric Sci, 2012,26:1058-1063 (in Chinese with English abstract) | |
[5] |
Bowes G . Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol, 1993,44:309-332
doi: 10.1146/annurev.pp.44.060193.001521 |
[6] |
Woodward F I . Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 1987,327:617-618
doi: 10.1038/327617a0 |
[7] |
Hetheringto A M, Woodward F I . The role of stomata in sensing and driving environmental change. Nature, 2003, 424:901-908
doi: 10.1038/nature01843 pmid: 12931178 |
[8] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱 . 降水与CO2浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 2012,36:597-606 |
Wang H, Zhou G S, Jiang Y L, Shi Y H, Xu Z Z . Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chin J Plant Ecol, 2012,36:597-606 (in Chinese with English abstract) | |
[9] | 孙谷畴, 赵平, 彭少麟, 曾小平 . 在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应. 生态学报, 2001,21:738-746 |
Sun G C, Zhao P, Peng S L, Zeng X P . Response of photosynthesis to water stress in four saplings from subtropical forests under elevated atmospheric CO2 concentration. Acta Ecol Sin, 2001,21:738-746 (in Chinese with English abstract) | |
[10] |
王建林, 温学发, 赵风华, 房全孝, 杨新民 . CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 2012,6:438-446
doi: 10.3724/SP.J.1258.2012.00438 |
Wang J L, Wen X F, Zhao F H, Fang Q X, Yang X M . Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chin J Plant Ecol, 2012,6:438-446 (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2012.00438 |
|
[11] |
Farquhar G D, Von Caemmerer S, Berry J A . Models of photosynthesis. Plant Physiol, 2001,125:42-45
doi: 10.1104/pp.125.1.42 |
[12] |
Reeves D W, Rogers H H, Prior S A, Wood C W, Runion G B . Elevated atmospheric carbon dioxide effects on sorghum and soybean nutrient status. J Plant Nutr, 1994,17:1939-1954
doi: 10.1080/01904169409364856 |
[13] | 翟志席, 郭玉海, 马永泽, 柏长青 . 植物生态生理学. 北京: 中国农业大学出版社, 1997, pp 60-66 |
Zhai Z X, Guo Y H, Ma Y Z, Bai C Q . Plant Ecophysiology. Beijing: China Agricultural University Press, 1997. pp 60-66(in Chinese) | |
[14] |
Apple M E, Olszyk D M, Ormrod D P, Lewis J, Southworth D, Tinqey D T . Morphology and stomatal function of douglas fir needles exposed to climate change: elevated CO2 and temperature. Int J Plant Sci, 2000,161:127-132
doi: 10.1086/314237 |
[15] |
Kouwenberg L L R, Kurschner W M, Mcelwain J C . Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev Mineral Geochem, 2007,66:215-241
doi: 10.2138/rmg.2007.66.9 |
[16] | Fraser L H, Greenall A, Carlyle C, Turkington R, Friedman C R . Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann Bot, 2009,103:769-775 |
[17] |
Polly H W, Johnson H B, Mayeux H S . Carbon dioxide and water fluxes of C3 and C4 perennials at subambient CO2 concentrations. Funct Ecol, 1992,6:693-703
doi: 10.2307/2389966 |
[18] |
Xu M . The optimal atmospheric CO2 concentration for the growth of winter wheat. J Plant Physiol, 2015,184:89-97
doi: 10.1016/j.jplph.2015.07.003 pmid: 26253981 |
[19] |
Croxdale J L . Stomatal patterning in angiosperms. J Bot, 2000,87:1069-1080
doi: 10.2307/2656643 |
[20] |
Shpak E D, Mcabee J M, Pillitteri L J, Ku T . Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science, 2005,309:290-293
doi: 10.1126/science.1109710 |
[21] |
孙成明, 庄恒扬, 杨连新, 杨洪建, 黄建晔, 董桂春, 朱建国, 王余龙 . FACE水稻生育期模拟. 生态学报, 2007,27:613-619
doi: 10.3321/j.issn:1000-0933.2007.02.024 |
Sun C M, Zhuang H Y, Yang L X, Yang H J, Huang J Y, Dong G C, Zhu J G, Wang Y L . A simulation of growth duration FACE rice. Acta Ecol Sin, 2007,27:613-619 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2007.02.024 |
|
[22] |
蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明 . 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005,21:355-357
doi: 10.3969/j.issn.1000-6850.2005.06.105 |
Jiang Y L, Zhang Q G, Yue W, Yao Y G, Wang G M . Effects of elevated atmospheric CO2 concentration on growth and yield of soybean. Chin Agric Sci Bull, 2005,21:355-357 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2005.06.105 |
|
[23] | 王修兰, 徐师华 . CO2浓度倍增对大豆各生育期阶段的光合作用及干物质积累的影响. 作物学报, 1994,20:520-527 |
Wang X L, Xu S H . Effect of CO2 concentration doubling on photosynthesis and dry matter production in different growth stages of soybean plant. Acta Agron Sin, 1994,20:520-527 (in Chinese with English abstract) | |
[24] |
Zheng Y P, Xu M, Hou R X, Shen R C, Qiu S, Ou-Yang Z . Effects of experimental warming on stomatal traits in leave s of maize (Zea may L.). Ecol Evol, 2013,3:3095-3111
doi: 10.1002/ece3.674 pmid: 3790554 |
[25] | 张绪成, 于显枫, 高世铭 . 高大气CO2浓度下氮素对小麦叶片光能利用的影响. 植物生态学报, 2010,34:1196-1203 |
Zhang X C, Yu X F, Gao S M . Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration. Chin J Plant Ecol, 2010,34:1196-1203 (in Chinese with English abstract) | |
[26] | 张绪成, 于显枫, 马一凡, 上官周平 . 高大气CO2浓度下小麦旗叶光合能量利用对氮素和光强的响应. 生态学报, 2011,31:1046-1057 |
Zhang X C, Yu X F, Ma Y F , Shang-Guan Z P. The responses of photosynthetic energy use in wheat flag leaves to nitrogen application rates and light density under elevated atmospheric CO2 concentration. Acta Ecol Sin, 2011,31:1046-1057 (in Chinese with English abstract) | |
[27] | Teng N J, Wang J, Chen T, Wang Y, Lin J . Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol, 2006,172:92-103 |
[28] | Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H . Elevated CO2 affects N-metabolism of young poplar plants (Populus tremula × P. alba) differently at deficient and sufficient N-supply. New Phytol, 2003,157:65-81 |
[29] | 朱玉, 黄磊, 党承华, 王贺新, 姜国斌, 李根柱, 张子川, 娄鑫, 郑云普 . 高温对蓝莓叶片气孔特征和气体交换参数的影响. 农业工程学报, 2016,32(1):218-225 |
Zhu Y, Huang L, Dang C H, Wang H X, Jiang G B, Li Y Z, Zhang Z C, Lou X, Zheng Y P . Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry. Trans CSAE, 2016,32(1):218-225 (in Chinese with English abstract) | |
[30] |
郑云普, 徐明, 王建书, 王贺新 . 气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响. 生态学报, 2016,36:1526-1538
doi: 10.5846/stxb201408231669 |
Zheng Y P, Xu M, Wang J S, Wang H X . Effects of future climate warming on the morphology, structure, and gas exchange of maize leaves in the North China Plain. Acta Ecol Sin, 2016,36:1526-1538 (in Chinese with English abstract)
doi: 10.5846/stxb201408231669 |
|
[31] | Amthor J S . Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res, 2001,84:1-34 |
[32] |
Cotrufo M F, Ineson P, Scott A . Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol, 1998,4:43-54
doi: 10.1046/j.1365-2486.1998.00101.x |
[33] | Donohue R J, Roderick M L, McVicar T R, Farquhar G D . Impact of CO2 fertilization on maximum foliage cover across the globe’s warm arid environments. Geophys Res Lett, 2013,40:3031-3035 |
[34] |
Field C B, Jackson R B, Mooney H A . Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ, 1995,18:1214-1225
doi: 10.1111/j.1365-3040.1995.tb00630.x |
[35] | JablonskiL M, Wang X, Curtis P S . Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002,156:9-26 |
[36] |
Valle R M . Transpiration rate and water use efficiency of soybean leaves adapted to different CO2 environments. Crop Sci, 1985,25:47-482
doi: 10.1016/0261-2194(85)90058-4 |
[37] | Levine L H, Richards J T, Wheeler R M . Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max). J Plant Physiol, 2009,166:903-913 |
[38] |
Bunce J A . Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ, 1992,15:541-549
doi: 10.1111/pce.1992.15.issue-5 |
[39] |
Assmann S M, Shimazaki K I . The multisensory guard cell: stomatal responses to blue light and abscisic acid. J Plant Physiol, 1999,119:809-815
doi: 10.1104/pp.119.3.809 |
[40] |
Kolla V A, Vavasseur A, Raghavendra A S . Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. Planta, 2007,225:1421-1429
doi: 10.1007/s00425-006-0450-6 |
[41] | Morison J I L . Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Cowan I R, Farquhar G D, eds. Stomatal Function. California: Stanford University Press, 1987. pp 229-512 |
[1] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[2] | Li-Li GUO,Xi-Xi ZHANG,Li-Hua HAO,Ya-Jun QIAO,Wen-Na CHEN,Yun-Ze LU,Fei LI,Xu CAO,Qing-Tao WANG,Yun-Pu ZHENG. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2019, 45(6): 949-956. |
[3] | Hai-Xia WU,Li-Li GUO,Li-Hua HAO,Hao ZHANG,Qing-Tao WANG,Dong-Juan CHENG,Zheng-Ping PENG,Fei LI,Xi-Xi ZHANG,Shu-Bin LI,Ming XU,Yun-Pu ZHENG. Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576. |
[4] | XU Yo-Ban, CHEN Yu-Fang, LI Shi-Qing. Effect of Elevated CO2 Concentration and Nitrogen Application on Translocation of Dry Matter and Nitrogen Restored before Anthesis in Winter Wheat [J]. Acta Agron Sin, 2011, 37(08): 1465-1474. |
[5] | LI Yan;ZHAO Xiao-Ming;XIA Xiu-Ying;LUAN Yu-Shi;DU Yu-Guang;LI Feng-Lan. Effects of Oligochitosan on Photosynthetic Parameter of Brassica napus Seedlings under Drought Stress [J]. Acta Agron Sin, 2008, 34(02): 326-329. |
[6] | Fu Jun-hua;Li Lian-cheng;Yuan Hong-li;Yue Shao-xian;Zhu Li-huang. Expression of the Atrazine-Resistant Transgenic Soybean Plants in Field Test [J]. Acta Agron Sin, 1993, 19(06): 497-500. |
|