Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1205-1211.doi: 10.3724/SP.J.1006.2018.01205

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Water Deficit at Flowering Stage on Yield and Quality of Fresh Waxy Maize

Long-Jian SHI(),Zhang-Rong WEN,Shi-Bo ZHANG,Jue WANG,Wei-Ping LU,Da-Lei LU()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-02-04 Accepted:2018-06-12 Online:2018-08-10 Published:2018-06-19
  • Contact: Da-Lei LU E-mail:412950386@qq.com;dllu@yzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(31471436);the National Natural Science Foundation of China(31771709);the National Natural Science Foundation of China(31271640);the National Key Research and Development Program of China(2016YFD0300109);the Technology System of Modern Agriculture Industry in Jiangsu Province(SXGC[2017]307);the Qing Lan Project of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract:

In order to clarify the influence of water deficit at flowering stage (tasseling silking stage) on yield and quality of fresh waxy maize (harvest at 23 d after silking), the fresh ear/grain yield and kernel components, pasting and thermal properties were measured using Suyunuo 5 and Yunuo 7. The soil moisture content was controlled by negative-pressure water supply and controlling pot device, and the relative soil moisture content for control and drought treatments was 80% and 60%, respectively. The drought at flowering stage decreased grain number, weight and volume, leading to the yield loss of fresh ear and grain. Under water deficit condition, grain starch content was increased, while protein content was increased in Yunuo 7 and unchanged in Suyunuo 5. For protein components, globulin contents was not affected by drought, while albumin, zein and glutenin contents were decreased when plants suffered water deficit at flowering stage. The starch granule size was reduced by drought for both varieties in both years, while starch iodine binding capacity for both varieties was decreased in 2015 and not affected in 2014 by drought. The peak, trough and final viscosities of grains were increased in Yunuo 7 and decreased in Suyunuo 5. Under drought condition, the grain peak gelatinization temperatures were decreased, retrogradation enthalpy and percentage were increased, while gelatinization enthalpy was only increased in Yunuo 7 in 2014. In conclusion, drought at flowering stage decreases fresh ear/grain yield, increases grain starch content, decreases protein content, starch granule size and the proportion of long chains in amylopectin, and increases the grain retrograde, while viscosities in response to water deficit are dependent on varieties (increases in Yunuo 7 and decreases in Suyunuo 5).

Key words: fresh waxy maize, water deficit at flowering stage, yield, quality

Table 1

Effects of drought at flowering stage on yield of fresh waxy maize"

品种
Variety
处理
Treatment
鲜籽粒重Fresh grain weight (mg) 干籽粒重
Dry grain weight (mg)
鲜籽粒体积
Fresh grain volume (μL)
每穗粒数
Grain
number
鲜果穗产量
Fresh ear yield
(g plant-1)
鲜籽粒产量
Fresh grain yield
(g plant-1)
籽粒含水率
Grain moisture content (%)
2014
苏玉糯5号
Suyunuo 5
对照Control 241.4 d 97.8 d 230.0 c 490.0 ab 158.0 c 118.2 cd 59.5 c
干旱Drought 241.6 d 94.6 de 216.7 d 438.7 bc 142.9 d 105.9 d 60.8 b
渝糯7号
Yunuo 7
对照Control 276.4 b 97.1 d 260.0 b 490.0 ab 178.9 b 135.5 b 64.9 a
干旱Drought 258.4 c 90.3 e 250.0 b 443.3 bc 159.6 c 114.6 cd 65.1 a
2015
苏玉糯5号
Suyunuo 5
对照Control 285.4 b 122.7 b 260.0 b 428.7 c 160.6 c 122.3 bc 57.0 e
干旱Drought 249.9 cd 108.0 c 226.7 cd 345.3 d 136.2 d 86.3 e 56.8 e
渝糯7号
Yunuo 7
对照Control 322.1 a 133.7 a 273.3 a 521.3 a 230.7 a 167.9 a 58.5 d
干旱Drought 279.7 b 111.9 c 253.3 b 455.3 bc 171.8 bc 127.3 bc 60.0 c

Table 2

Effects of drought at flowering stage on grain protein and starch contents of fresh waxy maize (mg g-1)"

品种
Variety
处理
Treatment
清蛋白
Albumin
球蛋白Globulin 谷蛋白
Zein
醇溶蛋白
Glutenin
蛋白质
Protein
淀粉
Starch
2014
苏玉糯5号
Suyunuo 5
对照Control 12.9 a 4.8 ab 25.9 a 21.0 b 90.7 a 550.9 d
干旱Drought 10.1 d 5.4 a 21.3 b 18.2 c 89.9 a 621.9 b
渝糯7号
Yunuo 7
对照Control 11.5 b 4.5 b 18.7 cd 24.5 a 79.0 b 571.8 cd
干旱Drought 10.4 d 4.7 ab 15.7 e 23.8 a 67.9 e 646.7 a
2015
苏玉糯5号
Suyunuo 5
对照Control 12.7 a 1.8 c 16.3 de 12.5 e 77.6 bc 559.5 d
干旱Drought 12.6 a 1.9 c 14.2 ef 11.1 ef 76.6 cd 581.8 cd
渝糯7号
Yunuo 7
对照Control 12.7 a 2.1 c 19.8 bc 14.1 d 75.3 d 562.5 cd
干旱Drought 11.0 c 2.1 c 12.8 f 10.4 f 68.8 e 604.4 bc

Fig. 1

Effects of drought at flowering stage on starch granule volume distribution of fresh waxy maize"

Fig. 2

Effects of drought at flowering stage on grain starch maximum absorption wavelength and iodine binding capacity of fresh waxy maize"

Table 3

Effects of drought at flowering stage on grain pasting property of fresh waxy maize"

品种
Variety
处理
Treatment
峰值黏度
PV (cP)
谷值黏度
TV (cP)
崩解值
BD (cP)
终值黏度
FV (cP)
回复值
SB (cP)
糊化温度
Ptemp (°C)
2014
苏玉糯5号
Suyunuo 5
对照Control 569 e 555 e 14 e 829 e 275 b 77.3 bc
干旱Drought 482 f 472 f 10 e 672 f 201 cd 78.1 ab
渝糯7号
Yunuo 7
对照Control 769 d 708 d 61 d 975 cd 267 b 76.9 c
干旱Drought 1188 b 982 a 207 b 1438 a 457 a 75.0 d
2015
苏玉糯5号
Suyunuo 5
对照Control 764 d 711 d 53 d 938 d 227 c 77.9 ab
干旱Drought 744 d 687 d 57 d 864 e 177 d 78.8 a
渝糯7号
Yunuo 7
对照Control 913 c 809 c 104 c 1007 c 198 cd 78.7 a
干旱Drought 1306 a 923 b 383 a 1112 b 189 d 77.5 bc

Table 4

Effects of drought at flowering stage on grain thermal property of fresh waxy maize"

品种
Variety
处理
Treatment
热焓值
ΔHgel (J g-1)
起始温度
To (°C)
峰值温度
Tp (°C)
终值温度
Tc (°C)
回生热焓值
ΔHret (J g-1)
回生值
%R (%)
2014
苏玉糯5号
Suyunuo 5
对照Control 9.6 ab 73.4 a 78.1 a 84.5 a 2.5 b 26.5 c
干旱Drought 9.6 ab 73.1 b 77.6 b 83.6 bc 3.2 a 33.9 a
渝糯7号
Yunuo 7
对照Control 8.8 b 72.9 c 77.6 b 84.4 a 1.8 c 20.6 d
干旱Drought 10.3 a 72.8 c 77.2 c 83.3 c 3.1 ab 29.9 bc
2015
苏玉糯5号
Suyunuo 5
对照Control 10.0 a 72.8 c 77.9 a 84.1 ab 3.3 a 32.7 ab
干旱Drought 10.3 a 72.4 d 77.0 c 83.8 bc 3.5 a 34.5 a
渝糯7号
Yunuo 7
对照Control 9.6 ab 71.2 e 75.9 d 82.1 d 3.1 ab 32.2 ab
干旱Drought 9.4 ab 71.1 e 75.6 e 82.4 d 3.3 a 35.3 a
[1] Service R F . Green energy. The promise of drought-tolerant corn. Science, 2009,326:517
doi: 10.1126/science.326_517
[2] Cooper M, Gho C, Leafgren R, Tang T, Messina C . Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot, 2014,65:6191-204
doi: 10.1093/jxb/eru064 pmid: 24596174
[3] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞 . 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P . Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract)
[4] Begcy K, Walia H . Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci, 2015,240:109-119
doi: 10.1016/j.plantsci.2015.08.024
[5] Li C, Li C Y, Zhang R Q, Liang W, Kang X L, Jia Y, Liao Y C . Effects of drought on the morphological and physicochemical characteristics of starch granules in different elite wheat varieties. J Cereal Sci, 2015,66:66-73
doi: 10.1016/j.jcs.2015.10.005
[6] Gous P W, Hasjim J, Franckowiak J, Fox G P, Gilbert R G . Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition. J Cereal Sci, 2013,58:414-419
doi: 10.1016/j.jcs.2013.08.002
[7] Yi B, Zhou Y F, Gao M Y, Zhang Z, Han Y, Yang G D, Xu W J, Huang R D . Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. J Integr Agric, 2014,13:2399-2406
doi: 10.1016/S2095-3119(13)60694-2
[8] Haider Z, Farooq U, Naseem I, Zia S, Alamgeer M . Impact of drought stress on some grain quality traits in rice (Oryza sativa). Agric Res, 2015,4:132-138
doi: 10.1007/s40003-015-0148-8
[9] Tester R F, Karkalas J . The effects of environmental conditions on the structural features and physicochemical properties of starches. Starch/Stärke, 2001,53:513-519
doi: 10.1002/1521-379X(200110)53:10<513::AID-STAR513>3.0.CO;2-5
[10] Wang Y X, Frei M . Stressed food: the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ, 2011,141:271-286
doi: 10.1016/j.agee.2011.03.017
[11] Thitisaksakul M, Jimenez R C, Arias M C, Beckles D M . Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci, 2012,56:67-80
doi: 10.1016/j.jcs.2012.04.002
[12] Beckles D M, Thitisaksakul M . How environmental stress affects starch composition and functionality in cereal endosperm . Starch/Stärke, 2014,66:58-71
doi: 10.1002/star.201300212
[13] Jagadish K S V, Kadam N N, Xiao G, Melgar R J, Bahuguna R N, Quinones C, Tamilselvan A, Prasad P V V . Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014,127:111-156
doi: 10.1016/B978-0-12-800131-8.00003-0
[14] Patindol J A, Siebenmorgen T J, Wang Y J . Impact of environmental factors on rice starch structure: A review. Starch/Stärke, 2015,67:42-54
doi: 10.1002/star.201400174
[15] Erbs M, Manderscheid R, Huther L, Schenderlein A, Wieser H, Danicke S, Weigel H J . Free-air CO2 enrichment modifies maize quality only under drought stress. Agron Sustain Dev, 2015,35:203-212
doi: 10.1007/s13593-014-0226-5
[16] Lu D, Cai X, Zhao J, Shen X, Lu W . Effects of drought after pollination on grain yield and quality of fresh waxy maize. J Sci Food Agric, 2015,95:210-215
doi: 10.1002/jsfa.6709 pmid: 24771545
[17] Hansen J, Moller I . Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem, 1975,68:87-94
doi: 10.1016/0003-2697(75)90682-X
[18] AACC. Approved Methods of the American Association of Cereal Chemists, Method 46 (1990) 10-01, AACCI, St Paul, MN
[19] 张智猛, 戴良香, 胡昌浩, 董树亭, 王空军 . 氮素对不同类型玉米籽粒氨基酸、蛋白质含量及其组分变化的影响. 西北植物学报, 2015,25:1415-1420
doi: 10.3321/j.issn:1000-4025.2005.07.024
Zhang Z M, Dai L X, Hu C H, Dong S T, Wang K J . Effect of nitrogen on amino acid and protein and protein component contents in the grains of different types of maize. Acta Bot Boreali-Occident Sin, 2005,25:1415-1420 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2005.07.024
[20] Lu D L, Shen X, Cai X M, Yan F B, Lu W P, Shi Y C . Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch. Food Chem, 2014,143:313-318
doi: 10.1016/j.foodchem.2013.07.089
[21] Lu D L, Lu W P . Effects of protein removal on the physicochemical properties of waxy maize flours. Starch/Stärke, 2012,64:874-881
doi: 10.1002/star.201200038
[22] Robins J S, Domingo C E . Some effects of severe soil moisture deficits at specific growth stages in corn. Agron J, 1953,45:618-621
doi: 10.2134/agronj1953.00021962004500120009x
[23] 刘永红, 何文铸, 杨勤, 柯国华, 高强 . 花期干旱对玉米籽粒发育的影响. 核农学报, 2007,21:181-185
doi: 10.3969/j.issn.1000-8551.2007.02.019
Liu Y H, He W Z, Yang Q, Ke G H, Gao Q . Effect of drought on grain growth at maize flowering stage. J Nucl Agric Sci, 2007,21:181-185 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-8551.2007.02.019
[24] 刘萍, 杜庆平, 徐月明, 王祥菊 . 糯玉米果穗不同计产方法对产量评价的影响. 江苏农业科学, 2013,41(4):85-87
doi: 10.3969/j.issn.1002-1302.2013.04.029
Liu P, Du Q P, Xu Y M, Wang X J . Effects of different ear yield calculating methods on yield evaluation in waxy corn. Jiangsu Agric Sci, 2013,41(4):85-87 (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.04.029
[25] Liu L M, Klocke N, Yan S P, Rogers D, Schlegel A, Lamm F, Chang S I, Wang D . Impact of deficit irrigation on maize physical and chemical properties and ethanol yield. Cereal Chem, 2013,90:453-462
doi: 10.1094/CCHEM-07-12-0079-R
[26] Zhang W, Gu J, Wang Z, Wei C, Yang J, Zhang J . Comparison of structural and functional properties of wheat starch under different soil drought conditions. Sci Rep, 2017,7(1):12312
doi: 10.1038/s41598-017-10802-3
[27] Lu D, Cai X, Lu W . Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. Starch/ Stärke, 2015,67:692-700
doi: 10.1002/star.v67.7-8
[28] Lindeboom N, Chang P R, Tyler R T . Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke, 2004,56:89-99
doi: 10.1002/(ISSN)1521-379X
[29] Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F . Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J Sci Food Agric, 2016,96:2746-2754.
doi: 10.1002/jsfa.2016.96.issue-8
[30] Singh S, Singh G, Singh P, Singh N . Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chem, 2008,108:130-139
doi: 10.1016/j.foodchem.2007.10.054
[31] Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W . Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits. J Agron Crop Sci, 2010,196:1-8
doi: 10.1111/jac.2009.196.issue-1
[32] 陆大雷, 孙旭利, 王鑫, 闫发宝, 陆卫平 . 灌浆结实期水分胁迫对糯玉米粉理化特性的影响. 中国农业科学, 2013,46:30-36
Lu D L, Sun X L, Wang X, Yan F B, Lu W P . Effects of water stress during grain filling on physicochemical properties of waxy maize flour. Sci Agric Sin, 2013,46:30-36 (in Chinese with English abstract)
[33] Gunaratne A, Ratnayaka U K, Sirisena N, Ratnayaka J, Kong X, Arachchi L V, Corke H . Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour. Starch/Stärke, 2011,63:283-290
doi: 10.1002/star.v63.5
[34] Perera C, Hoover R . Influence of hydroxypropylation on retrogradation properties of native, defatted and heatmoisture treated potato starches. Food Chem, 1999,64:361-375
doi: 10.1016/S0308-8146(98)00130-7
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!