Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1867-1874.doi: 10.3724/SP.J.1006.2018.01867

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf

Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG(),Wen-Yu YANG   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, Sichuan, China
  • Received:2018-03-31 Accepted:2018-07-20 Online:2018-12-12 Published:2018-07-27
  • Contact: Feng YANG E-mail:f.yang@sicau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571615);the Undergraduate Innovative Experiment Project(201710626115)

Abstract:

Light intensity plays a significant role in determining the growth and seed yield of crops under the sheltering of intercropping systems. By setting different light intensities, the photosynthetic characteristics, assimilate metabolism and the diurnal variation of chloroplast ultrastructure in leaf of different soybean cultivars to clarify the effect of light intensity on the structure of soybean leaf and the accumulation of carbohydrate, in order to provide a theoretical basis for improving soybean yield and quality. A pot experiment was carried out with three light intensities treatments, including CK (normal light, shading 0), A1 (black shading net, shading 10%) and A2 (two black shading nets, shading 36%) of two soybean cultivars (shade-resistant cultivar Nandou-12 and shade susceptible cultivar Guixia-3). With increased shading, net photosynthetic rate, stomatal conductance, transpiration rate and biomass decreased while intercellular carbon dioxide concentration and chlorophyll b increased in all treatments. There was a significant difference in the diurnal variation of sucrose and starch contents in soybean leaf under the same treatment. The diurnal variation of sucrose content in soybean leaf showed a bimodal curve with the peaks at 16:00 and next day 6:00 respectively under CK and A1 treatment. Under A2 treatment, the highest diurnal sucrose content was 32.80 μg g -1 in Nandou 12 and showed a unimodal changing trend with the peak at 16:00. The diurnal variation of starch content showed a single-peak curve and the highest value appeared at 21:00. Compared with the shade sensitive cultivar, the shade-tolerant soybean had greater diurnal variation of sucrose content and starch content under A2 treatment. The chloroplast structure of soybean leaf was intact and unbroken under the low light treatment. The diurnal variation of the cross-sectional area ratio of starch grain to chloroplast in the same cultivar changed significantly under the same treatment, showing a trend of decreasing after increasing. The changing rate was greater in shade-tolerant cultivar than in sensitive cultivar, and the maximum value appeared at 21:00. Therefore, biomass accumulation of soybean leaves and photosynthesis decreased with increasing shading. However, shade-tolerant cultivar maintained a good photosynthesis by adjusting the diurnal variation of photosynthetic organ structure, thus better adapting to the moderate shading condition.

Key words: soybean, light intensity, photosynthetic characteristics, assimilate, chloroplast ultrastructure

Fig. 1

Light intensity of soybean canopy under different treatments Bars superscripted by different letters are significant by different at P ≤ 0.05. CK: normal light, shading 0; A1: black shading net, shading 10%; A2: two black shading nets, shading 36%."

Table 1

Effects of different light intensities on photosynthetic characteristics of soybean leaf"

品种
Cultivar
处理
Treatment
净光合速率
Pn (μmol m-2 s-1)
气孔导度
Gs (μmol m-2 s-1)
胞间二氧化碳浓度
Ci (μmol m-2 s-1)
蒸腾速率
Tr (μmol mol-1 s-1)
南豆12 CK 18.074 a 0.438 a 260.999 b 5.006 a
Nandou 12 A1 17.505 a 0.336 a 274.026 b 4.679 a
A2 12.053 b 0.304 a 327.818 a 4.561 a
桂夏3号 CK 20.102 a 0.430 a 275.182 b 5.682 a
Guixia 3 A1 17.503 b 0.348 b 286.178 ab 5.040 a
A2 11.052 c 0.231 c 308.160 a 3.204 b

Table 2

Effects of different light intensities on photosynthetic pigment content of soybean leaf"

品种
Cultivar
处理
Treatment
叶绿素a含量
Chl a (mg dm-2)
叶绿素b含量
Chl b (mg dm-2)
类胡萝卜含量
Car (mg dm-2)
南豆12 CK 3.746 b 1.032 a 0.715 b
Nandou 12 A1 5.771 a 1.048 a 0.899 a
A2 3.414 b 1.245 a 0.685 b
桂夏3号 CK 3.758 b 1.034 a 0.603 a
Guixia 3 A1 4.808 a 1.045 a 0.656 a
A2 3.428 b 1.135 a 0.574 a

Table 3

Effects of different light intensities on biomass accumulation of soybean"

品种
Cultivar
处理
Treatment
生物量
Biomass (g)
茎叶比
Ratios of stem and leaf
南豆12 CK 7.354 a 0.608 b
Nandou 12 A1 5.591 b 0.633 b
A2 4.986 c 1.089 a
桂夏3号 CK 5.708 a 0.592 c
Guixia 3 A1 4.802 b 0.651 b
A2 4.490 b 0.813 a

Fig. 2

Effects of different light intensities on diurnal changes of sucrose content and starch content in soybean leaf Lowercase letters in the figure indicate the significant differences in the same treatment and the same cultivar at different time points. Starch or sucrose content with the same letter did not different at P ≤ 0.05. CK: normal light, shading 0; A1: black shading net, shading 10%; A2: two black shading nets, shading 36%."

Fig. 3

Effects of different light intensities on the chloroplast ultrastructure in soybean leaf The figure shows the chloroplast ultrastructure under 10000 magnifications. A-D is the diurnal variation of chloroplast ultrastructure of Nandou 12 under normal light at 9:00, 16:00, 21:00, and the next day 6:00, E-H is the diurnal variation of chloroplast ultrastructure of Guixia 3 under normal light, I-L is the diurnal variation of chloroplast ultrastructure of Nandou 12 under A2 treatment, and M-P is the diurnal variation of chloroplast ultrastructure of Guixia 3 under A2 treatment. Q: chloroplast, R: starch grains."

Fig. 4

Cross-sectional area ratios of starch grain to chloroplast under different light intensities in soybean leaf Figure A and B show the diurnal variation of ratios of starch to chloroplast cross-sectional area under CK and A2 treatment for Nandou 12 and Guixia 3. Bars superscripted by a, b, and c in the figure are significant by different at different time points for the same cultivar under the CK treatment, and those by (a), (b), (c) are significant by different at the different time points for the same cultivar under the A2 treatment (P ≤ 0.05). CK: normal light, shading 0; A2: two black shading nets, shading 36%."

[1] 杨峰, 崔亮, 黄山, 刘卫国, 雍太文, 杨文钰 . 不同株型玉米套作大豆生长环境动态及群体产量研究. 大豆科学, 2015,34:402-407
Yang F, Cui L, Huang S, Liu W G, Yong T W, Yang W Y . Soybean growth environment and group yield in soybean relay intercropped with different leaf type maize. Soybean Sci, 2015,34:402-407 (in Chinese with English abstract)
[2] 杨峰, 娄莹, 刘沁林, 范元芳, 刘卫国, 雍太文, 王小春, 杨文钰 . 玉米行距配置对套作大豆生物量、根系伤流及养分的影响. 中国农业科学, 2016,49:4056-4064
doi: 10.3864/j.issn.0578-1752.2016.20.019
Yang F, Lou Y, Liu Q L, Fan Y F, Liu W G, Yong T W, Wang X C, Yang W Y . Effect of maize row spacing on biomass, root bleeding sap and nutrient of soybean in relay strip intercropping systems. Sci Agric Sin, 2016,49:4056-4064 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.20.019
[3] 王竹, 杨文钰, 伍晓燕, 吴其林 . 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008,19:323-329
Wang Z, Yang W Y, Wu X Y, Wu Q L . Effects of maize plant type and planting width on the early morphologi calcharacters and yield of relay planted soybean. Chin J Appl Ecol, 2008,19:323-329 (in Chinese with English abstract)
[4] 刘鹏, 杨玉爱 . 钼、硼对大豆光合效率的影响. 植物营养与肥料学报, 2003,9:456-461
doi: 10.3321/j.issn:1008-505X.2003.04.015
Liu P, Yang Y A . Effect of molybdenum and boron on photosynthetic efficiency of soybean. Plant Nutr Fert Sci, 2003,9:456-461 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2003.04.015
[5] 吴其林, 王竹, 杨文钰 . 苗期遮阴对大豆茎秆形态和物质积累的影响. 大豆科学, 2007,26:868-872
doi: 10.3969/j.issn.1000-9841.2007.06.012
Wu Q L, Wang Z, Yang W Y . Seedling shading affects morphogenesis and substance accumulation of stem in soybean. Soybean Sci, 2007,26:868-872 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9841.2007.06.012
[6] 刘婷, 刘卫国, 任梦露, 杜勇利, 邓榆川, 邹俊林, 方萍, 杨文钰 . 遮阴程度对不同耐阴性大豆品种光合及抗倒程度的影响. 中国农业科学, 2016,49:1466-1475
Liu T, Liu W G, Ren M L, Du Y L, Deng Y C, Zou J L, Fang P, Yang W Y . Effects of shade degrees on photosynthesis and lodging resistance degree of different shade tolerance soybean. Sci Agric Sin, 2016,49:1466-1475 (in Chinese with English abstract)
[7] 宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵 . 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮阴的响应. 中国油料作物学报, 2009,31:474-479
doi: 10.3321/j.issn:1007-9084.2009.04.013
Song Y X, Yang W Y, Li Z P, Yu X B, Guo K, Xiang D B . The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chin J Oil Crop Sci, 2009,31:474-479 (in Chinese with English abstract)
doi: 10.3321/j.issn:1007-9084.2009.04.013
[8] 苏本营, 宋艳霞, 陈圣宾, 杨文钰 . 大豆幼苗对套作玉米遮阴环境的光合生理生态响应. 生态学报, 2015,35:3298-3308
doi: 10.5846/stxb201307031833
Su B Y, Song Y X, Chen S B, Yang W Y . Photosynthetic responses of soybean (Glycine max) seedlings to shading caused by maize in an intercropping system. Acta Ecol Sin, 2015,35:3298-3308 (in Chinese with English abstract)
doi: 10.5846/stxb201307031833
[9] 范元芳, 杨峰, 刘沁林, 谌俊旭, 王锐, 罗式伶, 杨文钰 . 套作阴蔽对苗期大豆叶片结构和光合荧光特性的影响. 作物学报, 2017,43:277-285
doi: 10.3724/SP.J.1006.2017.00277
Fan Y F, Yang F, Liu Q L, Chen J X, Wang R, Luo S L, Yang W Y . Effects of shading on leaf structure and photosynthetic fluorescence characteristicsof soybean seedlings in maize- soybean relay tntercropping system. Acta Agron Sin, 2017,43:277-285 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00277
[10] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏 . 不同基因型大豆耐阴性分析及其鉴定指标的筛选. 中国农业科学, 2014,47:2927-2939
doi: 10.3864/j.issn.0578-1752.2014.15.003
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Zhu S H . Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014,47:2927-2939 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.15.003
[11] 武晓玲, 张丽君, 聂邵仙, 杨峰, 佘跃辉, 杨文钰 . 弱光对大豆苗期生长及光合荧光特性的影响. 大豆科学, 2014,33:53-57
Wu X L, Zhang L J, Nie S X, Yang F, She Y H, Yang W Y . Effects of low light on growth and photosynthetic fluorescence characteristics in soybean seedling. Soybean Sci, 2014,33:53-57 (in Chinese with English abstract)
[12] 于晓波, 梁建秋, 何泽民, 廖俊华, 张明荣, 吴海英, 明充, 唐琼英, 李小清 . 玉米-大豆带状套作对大豆叶片形态及光合特性的影响. 中国油料作物学报, 2016,38:452-459
doi: 10.7505/j.issn.1007-9084.2016.04.007
Yu X B, Liang J Q, He Z M, Liao J H, Zhang M R, Wu H Y, Ming C, Tang Q Y, Li X Q . Response of leaf morphology and photosynthetic characteristics of soybean in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2016,38:452-459 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2016.04.007
[13] 李艳大, 汤亮, 张玉屏, 刘蕾蕾, 曹卫星, 朱艳 . 水稻冠层光合有效辐射的时空分布特征. 应用生态学报, 2010,21:952-958
Li Y D, Tang L, Zhang Y P, Liu L L, Cao W X, Zhu Y . Spatiotemporal distribution of photosynthetically active radiation in rice canopy. Chin J Appl Ecol, 2010,21:952-958 (in Chinese with English abstract)
[14] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞 . 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008,41:2624-2632
Lyu L H, Zhao M, Zhao J R, Tao H B, Wang P . Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Sci Agric Sin, 2008,41:2624-2632 (in Chinese with English abstract)
[15] Arnon D I . Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol, 1949,24:1-15
[16] 舒展, 张晓素, 陈娟, 陈根云, 许大全 . 叶绿素含量测定的简化. 植物生理学报, 2010,46:399-402
Shu Z, Zhang X S, Chen J, Chen G Y, Xu D Q . The simplification of chlorophyll content measurement. Acta Photophysiol Sin, 2010,46:399-402 (in Chinese with English abstract)
[17] 张志良, 瞿伟菁 . 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 127-130
Zhang Z L, Qu W J. Plant Physiology Experimental Guidance, 3rd edn. Beijing: Higher Education Press, 2003. pp 127-130(in Chinese)
[18] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 144-148
Gao J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. pp 144-148(in Chinese)
[19] 姚允聪, 王绍辉, 孔云 . 弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化. 中国农业科学, 2007,40:855-863
Yao Y C, Wang S H, Kong Y . Characteristics of photosynthesis machinism in different peach species under low light intensity. Sci Agric Sin, 2007,40:855-863 (in Chinese with English abstract)
[20] 范元芳, 杨峰, 王锐, 黄山, 雍太文, 刘卫国, 杨文钰 . 弱光对大豆生长、光合特性及产量的影响. 中国油料作物学报, 2016,38:71-76
Fan Y F, Yang F, Wang R, Huang S, Yong T W, Liu W G, Yang W Y . Effects of low light on growth, photosynthetic characteristics and yield of soybean. Chin J Oil Crop Sci, 2016,38:71-76 (in Chinese with English abstract)
[21] 黄卫东, 吴兰坤, 战吉成 . 中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节. 中国农业科学, 2004,37:1981-1985
Huang W D, Wu L K, Zhan J C . Growth and photosynthesis adaptation of dwarf-type Chinese Cherry (Prunus pseudocerasus L. cv. Laiyang) leaves to weak light stress. Sci Agric Sin, 2004,37:1981-1985 (in Chinese with English abstract)
[22] 眭晓蕾, 张宝玺, 张振贤, 毛胜利, 王立浩 . 不同品种辣椒幼苗光合特性及弱光耐受性的差异. 园艺学报, 2005,32:222-227
doi: 10.3321/j.issn:0513-353X.2005.02.007
Sui X L, Zhang B X, Zhang Z X, Mao S L, Wang L H . Differences of photosynthetic character istics and low light- tolerance in seedlings of four pepper cultivars. Acta Hortic, 2005,32:222-227 (in Chinese with English abstract)
doi: 10.3321/j.issn:0513-353X.2005.02.007
[23] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮 . 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学, 2016,49:2072-2081
doi: 10.3864/j.issn.0578-1752.2016.11.004
Wang Y, Zhang X, Yang W Y, Sun X, Su B Y, Cui L . Effect of shading on soybean leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages. Sci Agric Sin, 2016,49:2072-2081 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.11.004
[24] 张瑞朋, 付连舜, 佟斌, 吴晓秋, 朱海荣, 孙国伟 . 大豆叶片光合作用与光强及二氧化碳的关系. 吉林农业科学, 2015,40(3):8-13
Zhang R P, Fu L S, Tong B, Wu X Q, Zhu H R, Sun G W . The relationship of soybean leaf photosynthesis with light intensity and carbon dioxide. J Jilin Agric Sci, 2015,40(3):8-13 (in Chinese with English abstract)
[25] Wang J, Feng Y . The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants. Acta Phytoecol Sin, 2004,28:781-786
doi: 10.17521/cjpe.2004.0102
[26] Yu S M, Lo S F, Ho T D . Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015,20:844-857
doi: 10.1016/j.tplants.2015.10.009 pmid: 26603980
[27] 王书丽, 郭天财, 王晨阳, 查菲娜, 宋晓 . 两种筋力型小麦叶、粒可溶性糖含量及与籽粒淀粉积累的关系. 河南农业科学, 2005,34(4):12-15
doi: 10.3969/j.issn.1004-3268.2005.04.003
Wang S L, Guo T C, Wang C Y, Zha F N, Song X . Soluble sugar contents in leaf and grain in two gluten wheats and its relationship with grain starch accumulation. Henan Agric Sci, 2005,34(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-3268.2005.04.003
[28] 罗兴录, 池敏青, 黄小凤, 谢和霞, 陆飞伍 . 木薯叶片可溶性糖含量与块根淀粉积累的关系. 中国农学通报, 2006,22(8):289-291
Luo X L, Chi M Q, Huang X F, Xie H X, Lu F W . Studies on the relationship between soluble sugar content in the leaves and the starch accumulation in the root tuber of cassava, Chin Agric Sci Bull, 2006,22(8):289-291 (in Chinese with English abstract)
[29] 许燕 . 6个特色茶树品种(系)光合特性及叶绿体超微结构研究. 四川农业大学硕士学位论文,四川成都, 2016
Xu Y . Studies on Photosynthetic Traits and Chloroplast Ultrastmcture of Six Tea Characteristic Varieties (Lines). MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2016 ( in Chinese)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[4] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[5] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[6] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[9] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[10] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!