Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 91-99.doi: 10.3724/SP.J.1006.2019.84061

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of shade priming on photosynthetic characteristics of soybean seedlings

Yang GAO,Wei-Guo LIU(),Shu-Xian LI,Ting LIU,Tao ZHOU,Yong-Li DU,Yi ZHANG,Bi-Qin LI,Wen-Yu YANG   

  1. Institute of Ecological Agriculture, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2018-04-27 Accepted:2018-08-20 Online:2018-09-20 Published:2018-09-20
  • Contact: Wei-Guo LIU E-mail:lwgsy@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31671626).

Abstract:

Shade stress limits the further increase of soybean yield in intercropping. In order to investigate the effect of shade priming on photosynthetic and chlorophyll fluorescence characteristics of soybean seedlings, the growth of plants were undergone three stages of shade priming (S1), light recovery (S2), and shade stress (S3). The shade priming included shade signal (increasing the ration of far red with LED lamp of 730 nm) and shade stress. The treatments of the experiment were natural light (LLLL), shade-signal priming (LFLS), shade-stress priming (LSLS), and no priming (LLLS). The results showed that compared with LLLS, shade priming enhanced chlorophyll a, chlorophyll b, carotenoid contents and total chlorophyll content in old and middle-age leaves significantly, while reduced chlorophyll a/b in old and young leaves. Except for the middle-age leaves of LSLS, both the net photosynthetic rate and stomatal conductance of each leaf position of LFLS and LSLS were significantly increased. And there was no significant difference in intercellular carbon dioxide concentration in old and middle-age leaves between the primed plants and the non-primed plants. Compared with the control (LLLL), Fo, qp, NPQ, ΦPSII, ETR decreased, while Fv/Fm and Fv'/Fm' increased. Among them, the reduction of Fo in the primed was smaller than that in the control. The trend of the reduction of qp was LFLS > LLLS > LSLS in old leaves, while LSLS < LFLS < LLLS in middle-age leaves and LSLS > LFLS > LLLS in young leaves. ΦPSII, ETR considerably decreased as compared with the control, but there was no significant difference between the primed plants and the non-primed plants. Compared with LLLL, the increase of Fv'/Fm' in young leaves of the primed plants was greater than that of the non-primed plants, with the increase of 6.51%, 8.79%, and 12.05% (P < 0.05) in LLLS, LFLS, and LSLS, respectively. Therefore, by shade priming at S1, soybeans adapted to the light environment through the plasticity of photosynthetic characteristics and exhibited a stronger tolerance to shade stress occurring during S3.

Key words: shade priming, soybean, photosynthetic characteristics, chlorophyll fluorescence

Table 1

Experimental design"

处理
Treatment
第1阶段S1 (V1-V2)
The first stage (V1-V2)
第2阶段S2 (V3-V5)
The second stage (V3-V5)
第3阶段S3 (V6-V8)
The third stage (V6-V8)
LLLL Light Light Light
LLLS Light Light Shade
LFLS Shade signal Light Shade
LSLS Shade Light Shade

Table 2

Effect of different shade primings on photosynthetic pigments in leaves of soybean seedlings"

叶位
Leaf position
处理
Treatment
叶绿素a含量
Chlorophyll a content
(mg g-1)
叶绿素b含量
Chlorophyll b content
(mg g-1)
叶绿素总含量Chlorophyll content
(mg g-1)
类胡萝卜素含量Carotenoid content
(mg g-1)
叶绿素a/b Chlorophyll a/b
老叶 LLLL 1.522±0.000 a 0.331±0.003 b 1.853±0.003 a 0.451±0.002 b 4.596±0.048 a
Old leaves LLLS 1.217±0.033 b 0.278±0.004 c 1.494±0.037 c 0.400±0.008 c 4.384±0.074 a
LFLS 1.479±0.024 a 0.380±0.018 a 1.859±0.006 a 0.507±0.018 a 3.911±0.243 b
LSLS 1.278±0.066 b 0.366±0.018 ab 1.645±0.083 b 0.424±0.020 bc 3.487±0.040 b
成熟叶 LLLL 1.754±0.032 b 0.408±0.002 c 2.162±0.033 c 0.472±0.011 d 4.303±0.075 a
Middle-age LLLS 1.577±0.008 c 0.466±0.001 b 2.043±0.009 d 0.503±0.004 c 3.387±0.013 b
leaves LFLS 1.749±0.010 b 0.543±0.013 a 2.292±0.022 b 0.536±0.009 b 3.222±0.059 b
LSLS 1.887±0.022 a 0.562±0.003 a 2.449±0.024 a 0.627±0.007 a 3.353±0.023 b
新叶 LLLL 1.901±0.033 b 0.533±0.008 b 2.434±0.039 b 0.648±0.014 b 3.570±0.045 a
Young leaves LLLS 2.670±0.151 a 0.819±0.044 a 3.489±0.195 a 0.844±0.052 a 3.258±0.022 b
LFLS 2.458±0.040 a 0.819±0.012 a 3.277±0.051 a 0.769±0.020 a 3.000±0.027 d
LSLS 2.493±0.028 a 0.796±0.012 a 3.289±0.040 a 0.813±0.009 a 3.132±0.016 c

Table 3

Effect of different shade primings on photosynthetic parameters in leaves of soybean seedlings"

叶位
Leaf position
处理
Treatment
净光合速率
Net photosynthetic
rate (Pn)
(μmol CO2 m-2 s-1)
气孔导度
Stomatal conductance (Gs)
(mol H2O m-2 s-1)
胞间二氧化碳浓度
Intercellular CO2
concentration (Ci)
(μmol CO2 mol-1)
蒸腾速率
Transpiration rate (Tr)
(mmol H2O m-2 s-1)
老叶 LLLL 4.04±0.13 d 0.167±0.004 a 339.71±1.45 a 3.57±0.12 a
Old leaves LLLS 5.13±0.11 c 0.086±0.001 d 284.76±1.08 b 1.59±0.03 d
LFLS 6.32±0.10 a 0.122±0.007 b 289.75±4.73 b 3.16±0.13 b
LSLS 5.71±0.03 b 0.102±0.001 c 288.90±0.49 b 2.06±0.06 c
成熟叶 LLLL 4.62±0.03 d 0.044±0.001 c 212.03±4.55 b 1.14±0.01 c
Middle-age leaves LLLS 9.78±0.09 b 0.144±0.006 b 264.41±2.98 a 2.29±0.09 b
LFLS 10.81±0.12 a 0.163±0.001 a 265.53±1.34 a 2.57±0.06 b
LSLS 8.33±0.08 c 0.140±0.008 b 267.67±4.27 a 5.13±0.22 a
新叶 LLLL 13.74±0.34 a 0.147±0.008 a 213.21±10.57 a 3.34±0.05 a
Young leaves LLLS 8.99±0.09 d 0.078±0.001 c 186.93±0.44 b 2.19±0.05 b
LFLS 12.36±0.29 b 0.146±0.004 a 229.48±0.35 a 3.46±0.15 a
LSLS 11.29±0.21 c 0.129±0.003 b 223.94±1.73 a 3.40±0.15 a

Table 4

Effect of different shade primings on chlorophyll fluorescence parameters in leaves of soybean seedlings"

处理
Treatment
Fo Fv/Fm Fv'/Fm' ΦPSII NPQ qp ETR
老叶 Old leaves
LLLL 3853.0±287.1 a 0.753±0.005 b 0.515±0.019 b 0.229±0.006 a 2.049±0.291 a 0.450±0.006 a 96.32±2.43 a
LLLS 2694.0±108.3 c 0.809±0.004 a 0.593±0.012 a 0.204±0.002 b 1.960±0.097 a 0.357±0.002 b 85.68±0.64 a
LFLS 3289.5±22.8 b 0.815±0.003 a 0.605±0.001 a 0.204±0.002 b 1.892±0.059 a 0.337±0.002 b 85.47±0.85 a
LSLS 2899.3±84.0 bc 0.789±0.004 ab 0.537±0.013 b 0.209±0.001 b 2.285±0.146 a 0.391±0.001 b 87.64±0.37 a
成熟叶 Middle-age leaves
LLLL 3677.0±110.9 a 0.778±0.007 b 0.544±0.001 c 0.239±0.003 a 2.268±0.055 a 0.460±0.003 a 100.17±1.33 a
LLLS 2749.6±37.8 c 0.818±0.003 a 0.616±0.012 a 0.218±0.003 b 1.821±0.101 b 0.355±0.003 b 91.56±1.28 b
LFLS 3037.0±101.0 b 0.807±0.002 a 0.600±0.008 a 0.220±0.002 b 1.810±0.126 b 0.367±0.002 b 92.19±0.85 b
LSLS 2837.0±12.7 bc 0.811±0.001 a 0.571±0.005 b 0.213±0.002 b 2.134±0.034 a 0.373±0.002 b 89.25±0.85 a
新叶 Young leaves
LLLL 4074.3±93.8 a 0.749±0.010 b 0.512±0.012 b 0.263±0.003 a 2.292±0.261 a 0.515±0.003 a 110.60±1.46 a
LLLS 3329.3±29.9 c 0.788±0.003 a 0.545±0.012 a 0.249±0.005 b 2.141±0.098 a 0.457±0.005 b 104.44±2.06 a
LFLS 3612.3±118.6 b 0.785±0.005 a 0.557±0.010 a 0.237±0.006 b 1.933±0.035 a 0.427±0.006 b 99.40±2.48 a
LSLS 3225.3±76.9 c 0.792±0.002 a 0.573±0.004 a 0.236±0.003 b 1.855±0.033 a 0.412±0.003 b 99.12±1.28 a
[1] Deryng D, Conway D, Ramankutty N, Price J, Warren R . Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett, 2014,9:2033-2053.
doi: 10.1088/1748-9326/9/3/034011
[2] Loreti E, Van V H, Perata P . Plant responses to flooding stress. Curr Opin Plant Biol, 2016,33:64-71.
doi: 10.1016/j.pbi.2016.06.005 pmid: 27322538
[3] Wang X, Cai J, Liu F L, Jin M, Yu H X, Jiang D, Wollenweber B, Dai T, Cao W . Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. J Cereal Sci, 2012, 55:331-336.
doi: 10.1016/j.jcs.2012.01.004
[4] Liu S, Li X, Larsen D H, Zhu X, Song F, Liu F . Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat. J Agron Crop Sci, 2017,203:29-40.
doi: 10.1111/jac.12190
[5] Wang X, Vignjevic M, Liu F L, Jacobsen S, Jiang D, Wollenweber B . Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul, 2015,75:677-687.
doi: 10.1007/s10725-014-9969-x
[6] Li C Y, Jiang D, Wollenweber B, Li Y, Dai T B, Cao W X . Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci, 2011,180:672-678.
doi: 10.1016/j.plantsci.2011.01.009
[7] Cano E A, Bolarin M C, Perezalfocea F, Caro M . Effect of NaCl priming in increased salt tolerance in tomato. J Hortic Sci, 1991,66:621-628.
doi: 10.1080/00221589.1991.11516192
[8] Ali Q, Daud M K, Haider M Z, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Faisal S, Deeba F, Ali I, Zhu S . Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem, 2017,119:50-58.
doi: 10.1016/j.plaphy.2017.08.010 pmid: 28843888
[9] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰 . 发展套作大豆, 振兴大豆产业. 大豆科学, 2008,27:1-7.
doi: 10.11861/j.issn.1000-9841.2008.01.0001
Yang W Y, Yong T W, Ren W J, Fan G Q, Mou J Y, Lu X L . Develop relay-planting soybean, revitalize soybean industry. Soybean Sci, 2008,27:1-7 (in Chinese with English abstract).
doi: 10.11861/j.issn.1000-9841.2008.01.0001
[10] 杨文钰 . 套作大豆优势突出农民欢迎发展潜力巨大: 国家大豆产业体系专家考察四川套作大豆纪实. 大豆科技, 2009, ( 6):14-15.
Yang W Y . Intercropping soybean is welcomed by farmers for highlighted superiority and great potential for development: the national soybean industry experts inspect the Sichuan intercropping soybeans. Soybean Sci Technol, 2009, ( 6):14-15 (in Chinese).
[11] 杨文钰, 张含彬, 牟锦毅, 任万军, 雍太文, 李兴佐, 陈平, 陈文 . 南方丘陵地区旱地新三熟麦/玉/豆高效栽培技术. 作物杂志, 2006, ( 5):43-44.
doi: 10.3969/j.issn.1001-7283.2006.05.015
Yang W Y, Zhang H B, Mou J Y, Ren W J, Yong T W, Li X Z, Chen P, Chen W . High-efficient cultivation techniques of new third-cropping wheat/maize/soybean in dryland in South China hilly region. Crops, 2006, ( 5):43-44 (in Chinese).
doi: 10.3969/j.issn.1001-7283.2006.05.015
[12] Xu C L, Tao H B, Wang P, Wang Z L . Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum, L.) due to the delaying of leaf senescence. J Integr Agric, 2016,15:63-75.
[13] 孙建磊, 王崇启, 肖守华, 高超, 李利斌, 曹齐卫, 王晓, 董玉梅, 焦自高 . 弱光对黄瓜幼苗光合特性及Rubisco酶的影响. 核农学报, 2017,31:1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200
Sun J L, Wang C Q, Xiao S H, Gao C, Li L B, Cao Q W, Wang X, Dong Y M, Jiao Z G . Effect of low light on photosynthesis and Rubisco of cucumber seedlings. J Nucl Agric Sci, 2017,31:1200-1209 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2017.06.1200
[14] 李彩斌, 郭华春 . 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析. 中国生态农业学报, 2017,25:1181-1189.
doi: 10.13930/j.cnki.cjea.170177
Li C B, Guo H C . Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition. Chin J Eco-Agric, 2017,25:1181-1189 (in Chinese with English abstract).
doi: 10.13930/j.cnki.cjea.170177
[15] 陈德良, 陶月良, 吴友贵, 程瑶, 夏家天 . 遮荫对百山祖冷杉光合特性和叶绿素荧光参数的影响. 核农学报, 2016,30:2056-2064.
doi: 10.11869/j.issn.100-8551.2016.10.2056
Chen D L, Tao Y L, Wu Y G, Cheng Y, Xia J T . Effect of shade on the photosynthetic characteristics and chlorophyll fluorescence parameters of Abies beshanzuensis M. H. Wu. J Nucl Agric Sci, 2016,30:2056-2064 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2016.10.2056
[16] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰 . 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015,48:2497-2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y . Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Sci Agric Sin, 2015,48:2497-2507 (in Chinese with English abstract).
[17] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒 . 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学, 2017,50:792-801.
doi: 10.3864/j.issn.0578-1752.2017.05.002
Sun Z D, Zhang Z P, Cai Z Y, Zeng W Y, Lai Z G, Chen H Z, Yang S Z, Tang X M, Su Y Z, Gai J Y . Establishment of an evaluation system of shade tolerance in soybean and its variation in Southern China germplasm population. Sci Agric Sin, 2017,50:792-801 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.05.002
[18] Fehr W R, Caviness C E . Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1-11.
[19] Arnon D I . Copper enzymes in isolated chloroplasts. Poly- phenoloxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[20] Wang X, Liu F L, Jiang D . Priming: a promising strategy for crop production in response to future climate. J Integr Agric, 2017,16:2709-2716.
doi: 10.1016/S2095-3119(17)61786-6
[21] Bruce T J A, Matthes M C, Napier J A, Pickett J A . Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci, 2007,173:603-608.
doi: 10.1016/j.plantsci.2007.09.002
[22] Chinnusamy V, Zhu J K . Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009,12:133-139.
doi: 10.1016/j.pbi.2008.12.006 pmid: 3139470
[23] Voityuk A A, Marcus R A, Michelbeyerle M E . On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor. Proc Natl Acad Sci USA, 2014,111:5219-5224.
doi: 10.1073/pnas.1402025111 pmid: 24639509
[24] Lorrain S, Allen T, Duek P D, Lorrain S, Allen T, Duek P D, Whitelam G C, Fankhauser C . Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 2008,53:312-323.
doi: 10.1111/j.1365-313X.2007.03341.x pmid: 18047474
[25] Franklin K A . Shade avoidance. New Phytol, 2008,179:930-944.
doi: 10.1111/nph.2008.179.issue-4
[26] Duek P D, Fankhauser C . bHLH class transcription factors take centre stage in phytochrome signaling. Trends Plant Sci, 2005,10:51-54.
doi: 10.1016/j.tplants.2004.12.005 pmid: 15708340
[27] Procko C, Crenshaw C M, Ljung K, Noel J P, Chory J . Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol, 2014,165:1285-1301.
doi: 10.1104/pp.114.241844 pmid: 24891610
[28] Devlin P F, Yanovsky M J, Kay S A . A genomic analysis of the shade avoidance response in arabidopsis. Plant Physiol, 2003,133:1617-1629.
doi: 10.1104/pp.103.034397 pmid: 14645734
[29] Das D, St Onge K R, Voesenek L A, Pierik R, Sasidharan R . Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiol, 2016,172:718-733.
doi: 10.1104/pp.16.00725 pmid: 27329224
[30] Luo X M, Lin W H, Zhu S W, Zhu J Y, Sun Y, Fan X Y, Cheng M L, Hao Y Q, Ou E, Tian M M, Liu L J, Zhang M, Xie Q, Chong K, Wang Z Y . Integration of light and brassinosteroid signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell, 2010,19:872-883.
doi: 10.1016/j.devcel.2010.10.023 pmid: 3022420
[31] Gommers C M, Visser E J, St Onge K R, Voesenek L A, Pierik R . Shade tolerance: when growing tall is not an option. Trends Plant Sci, 2013,18:65-71.
doi: 10.1016/j.tplants.2012.09.008 pmid: 23084466
[32] Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman J M, Speed T P, Quail P H . A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet, 2013,9:e1003244.
doi: 10.1371/journal.pgen.1003244 pmid: 23382695
[33] Bassi R, Dainese P . A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem, 1992,204:317-326.
doi: 10.1111/j.1432-1033.1992.tb16640.x pmid: 1740145
[34] 崔继林 . 光合作用与生产力. 南京: 江苏科学技术出版社, 2000. pp 198-207.
Cui J L. Photosynthesis and Productivity. Nanjing: Jiangsu Scientific and Technical Publishers, 2000. pp 198-207(in Chinese).
[35] 时向东, 文志强, 刘艳芳, 王卫武 . 不同光强对作物生长影响的研究综述. 安徽农业科学, 2006,34:4216-4218.
doi: 10.3969/j.issn.0517-6611.2006.17.009
Shi X D, Wen Z Q, Liu Y F, Wang W W . Research on the effect of different light stresses on crop growth. J Anhui Agric Sci, 2006 , 34:4216-4218 (in Chinese with English abstract).
doi: 10.3969/j.issn.0517-6611.2006.17.009
[36] 杨芳, 许岳飞, 李丽群, 周禾 . 类胡萝卜素与草坪草耐荫性的研究进展. 草业与畜牧, 2011, ( 1):1-6.
doi: 10.3969/j.issn.1673-8403.2011.01.001
Yang F, Xu Y F, Li L Q, Zhou H . Carotenoids’s research progress in turfgrass shade. Pratacult Anim Husb, 2011, ( 1):1-6 (in Chinese with English abstract).
doi: 10.3969/j.issn.1673-8403.2011.01.001
[37] 徐凯, 郭延平, 张上隆 . 不同光质对草莓叶片光合作用和叶绿素荧光的影响. 中国农业科学, 2005,38:369-375.
Xu K, Guo Y P, Zhang S L . cEffect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves. Sci Agric Sin, 2005,38:369-375 (in Chinese with English abstract).
[38] 郭翠花, 高志强, 苗果园 . 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响作物学报. 作物学报, 2010,36:673-679.
doi: 10.3724/SP.J.1006.2010.00673
Guo C H, Gao Z Q, Miao G Y . Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin, 2010,36:673-679 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00673
[39] 宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵 . 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. 中国油料作物学报, 2009,31:474-479.
doi: 10.3321/j.issn:1007-9084.2009.04.013
Song Y X, Yang W Y, Li Z X, Yu X B, Guo K, Xiang D B . The effects of shading on photosynthetic and fluorescent characteristics of Soybean seedlings under maize-soybean relay cropping. Chin J Oil Crop Sci, 2009,31:474-479 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2009.04.013
[40] Reich P B, Tjoelker M G, Walters M B, Vanderklein D W, Buschena C . Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol, 2010,12:327-338.
doi: 10.1046/j.1365-2435.1998.00208.x
[41] 吴亚男 . 不同玉米品种耐阴性评价及高产群体结构. 沈阳农业大学博士学位论文,辽宁沈阳, 2014.
Wu Y N . Shade-endurance among Different Maize Varieties and High-yielding Population Structure. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2014 (in Chinese with English abstract).
[42] 熊宇, 杨再强, 薛晓萍, 李军 . 遮光处理对温室黄瓜幼龄植株叶片光合参数的影响. 中国农业气象, 2016,37:222-230.
doi: 10.3969/j.issn.1000-6362.2016.02.012
Xiong Y, Yang Z Q, Xue X P, Li J . Effect of shading on photosynthetic parameters in greenhouse cucumber leaves. Chin J Agrometeorol, 2016,37:222-230 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2016.02.012
[43] 周艳虹, 黄黎锋, 喻景权 . 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学学报, 2004,30:153-160.
doi: 10.3321/j.issn:1671-3877.2004.02.006
Zhou Y H, Huang L F, Yu J Q . Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves. J Plant Physiol Mol Biol, 2004, 30:153-160 (in Chinese with English abstract).
doi: 10.3321/j.issn:1671-3877.2004.02.006
[44] 葛亚英, 田丹青, 俞信英, 郁永明, 潘刚敏, 刘晓静 . 光合荧光参数等指标对室内悬挂植物12个品种的耐荫性评价. 浙江农业学报, 2013,25:483-487.
doi: 10.3969/j.issn.1004-1524.2013.03.12
Ge Y Y, Tian D Q, Yu X Y, Yu Y M, Pan G M, Liu X J . Evaluation on shade-tolerance of twelve indoor hanging plant species by using several indexes such as chlorophyll fluorescence parameters. Acta Agric Zhejiangensis, 2013,25:483-487 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2013.03.12
[45] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军 . 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013,37:1010-1017.
doi: 10.3724/SP.J.1258.2013.00104
Jiao N Y, Yang M K, Ning Y T, Yin F, Xu G W, Fu G Z, Li Y J . Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plant Ecol, 2013,37:1010-1017 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2013.00104
[46] 韦金河, 闻婧, 张俊, 孟力力, 陈柳, 施宇恬 . 夏季遮光对3种槭树PSII叶绿素荧光参数的影响. 江苏农业学报, 2015,31:172-179.
doi: 10.3969/j.issn.1000-4440.2015.01.027
Wei J H, Wen J, Zhang J, Meng L L, Chen L, Shi Y T . Effects of summer shading on PSII chlorophyll fluorescence parameters in three maple trees. Jiangsu J Agric Sci, 2015,31:172-179 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-4440.2015.01.027
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[4] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[5] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[6] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[9] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[10] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[11] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[12] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[13] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!