Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 81-90.doi: 10.3724/SP.J.1006.2019.84058
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
ABLET Ershat1,2,SAWUT Mamat1,2,3,*,MAIMAITIAILI Baidengsha4,*(),Shen-Qun AN1,2,Chun-Yue MA1,2
[1] |
史典义, 刘忠香, 金危危 . 植物叶绿素合成、分解代谢及信号调控. 遗传, 2009,31:698-704.
doi: 10.3724/SP.J.1005.2009.00698 |
Shi D Y, Liu Z X, Jin W W . Biosynthesis, catabolism and related signal regulations of plant chlorophyll. Hereditas, 2009,31:698-704 (in Chinese with English abstract).
doi: 10.3724/SP.J.1005.2009.00698 |
|
[2] |
刘燕婕, 李建设, 高艳明 . 可见光波段不同氮处理生菜叶片光谱反射率与叶片全氮、叶绿素的相关性研究. 北方园艺, 2015,39(22):12-16.
doi: 10.11937/bfyy.201522003 |
Liu Y J, Li J S, Gao Y M . Correlation between lettuce leaf spectral reflectance in visible light area and leaf nitrogen content and leaf chlorophyll content under different levels of nitrogen. Nor Hortic, 2015,39(22):12-16 (in Chinese with English abstract).
doi: 10.11937/bfyy.201522003 |
|
[3] |
姜海玲, 杨杭, 陈小平, 王树东, 李雪轲, 刘凯 . 利用光谱指数反演植被叶绿素含量的精度及稳定性研究. 光谱学与光谱分析, 2015,35:975-981.
doi: 10.3964/j.issn.1000-0593(2015)04-0975-07 |
Jiang H L, Yang H, Chen X P, Wang S D, Li X K, Liu K . Research on accuracy and stability of inversing vegetation chlorophyll content by spectral index method. Spectrosc Spect Anal, 2015,35:975-981 (in Chinese with English abstract).
doi: 10.3964/j.issn.1000-0593(2015)04-0975-07 |
|
[4] |
Inoue Y, Guérif M, Baret F, Skidmore A, Gitelson A, Schlerf M . Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyper-spectral data for different types of vegetation. Plant Cell Environ, 2016,39:2609-2623.
doi: 10.1111/pce.12815 pmid: 27650474 |
[5] |
Vane G, Goetz A . Terrestrial imaging spectrometry: Current status, future trends. Remote Sense Environ, 1993,44:117-126.
doi: 10.1016/0034-4257(93)90011-L |
[6] |
Curran P J . Remote sensing of foliar chemistry. Remote Sense Environ, 1989,30:271-278.
doi: 10.1016/0034-4257(89)90069-2 |
[7] |
Jacquemoud S, Baret F . PROSPECT: a model of leaf optical properties spectra. Remote Sense Environ, 1990,34:75-91.
doi: 10.1016/0034-4257(90)90100-Z |
[8] |
Li D, Cheng T, Zhou K, Zheng H, Yao X, Tian Y . WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J Photogramm Remote Sense, 2017: 103-117.
doi: 10.1016/j.isprsjprs.2017.04.024 |
[9] |
毛博慧, 李民赞, 孙红, 刘豪杰, 张俊逸, Zhang Q . 冬小麦苗期叶绿素含量检测光谱学参数寻优. 农业工程学报, 2017,33(S1):164-169.
doi: 10.11975/j.issn.1002-6819.2017.z1.025 |
Mao B H, Li M Z, Sun H, Liu H J, Zhang J Y, Zhang Q . Optimization of spectroscopy parameters and prediction of chlorophyll content at seeding stage of winter wheat. Trans CSAE, 2017,33(S1):164-169 (in Chinese with English abstract).
doi: 10.11975/j.issn.1002-6819.2017.z1.025 |
|
[10] | 丁永军, 张晶晶, 孙红, 李修华 . 玻璃温室环境下番茄叶绿素含量敏感光谱波段提取及估测模型. 光谱学与光谱分析, 2017,37:194-199. |
Ding Y J, Zhang J J, Sun H, Li X H . Sensitive bands extraction and prediction model of tomato chlorophyll in glass green house. Spectrosc Spect Anal, 2017,37:194-199 (in Chinese with English abstract). | |
[11] |
姚霞, 田永超, 刘小军, 曹卫星, 朱艳 . 不同算法红边位置监测小麦冠层氮素营养指标的比较. 中国农业科学, 2010,43:2661-2667.
doi: 10.3864/j.issn.0578-1752.2010.13.005 |
Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y . Comparative study on monitoring canopy leaf nitrogen status on red edge position with different algorithms in wheat. Sci Agric Sin, 2010,43:2661-2667 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2010.13.005 |
|
[12] |
Yi Q X, Huang J F, Wang F M, Wang X Z . Evaluating the performance of PC-ANN for the estimation of rice nitrogen concentration from canopy hyperspectral reflectance. Int J Remote Sense, 2010,31:931-940.
doi: 10.1080/01431160902912061 |
[13] |
Curran P J, Dungan J L, Peterson D L . Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sense Environ, 2001,76:349-359.
doi: 10.1016/S0034-4257(01)00182-1 |
[14] |
郭超凡, 郭逍宇 . 基于可见光波段包络线去除的湿地植物叶片叶绿素估算. 生态学报, 2016,36:6538-6546.
doi: 10.5846/stxb201507091460 |
Guo C F, Guo X Y . Estimation of wetland plant leaf chlorophyll content based on continuum removal on visible domain. Acta Ecol Sin, 2016,36:6538-6546 (in Chinese with English abstract).
doi: 10.5846/stxb201507091460 |
|
[15] |
Mielke C, Boesche N K, Rogass C, Kaufmann H, Gauert C . New geometric hull continuum removal algorithm for automatic absorption band detection from spectroscopic data. Remote Sense Lett, 2015,6:97-105.
doi: 10.1080/2150704X.2015.1007246 |
[16] |
Breiman L . Random forests. Mach Learn, 2001,45:5-32.
doi: 10.1023/A:1010933404324 |
[17] | 李振国, 杨德森 . 生活质量与临床医学. 中国社会医学, 1994, ( 3):34-35. |
Li Z G, Yang D S . Quality of life and clinical medicine. Chin J Soc Med, 1994, ( 3):34-35 (in Chinese). | |
[18] |
Donnelly S, Walsh D . Quality of life assessment in advanced cancer. Palliat Med, 2000,2:338-342.
doi: 10.1007/s11912-000-0027-7 pmid: 8931062 |
[19] |
Grömping U . Variable importance assessment in regression: linear regression versus random forest. Am Stat, 2009,63:308-319.
doi: 10.1198/tast.2009.08199 |
[20] |
梁智, 孙国强, 卫志农, 臧海祥 . 基于变量选择与高斯过程回归的短期负荷预测. 电力建设, 2017,38(2):122-128.
doi: 10.3969/j.issn.1000-7229.2017.01.017 |
Liang Z, Sun G Q, Wei Z N, Zang H X , Short-term load forecasting based on variable selection and gaussian process regression. Electric Power Const, 2017,38(2):122-128 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-7229.2017.01.017 |
|
[21] |
尼加提·卡斯木, 师庆东, 王敬哲, 茹克亚·萨吾提, 依力亚斯江·努尔麦麦提, 古丽努尔·依沙克 . 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算. 农业工程学报, 2017,33(22):208-216.
doi: 10.11975/j.issn.1002-6819.2017.22.027 |
Nijat K, Shi Q D, Wang J Z, Rukeya S, Ilyas N, Gulnur I . Estimation of spring wheat chlorophyll content based on hyper-spectral features and PLSR model. Trans CSAE, 2017,33(22):208-216 (in Chinese with English abstract).
doi: 10.11975/j.issn.1002-6819.2017.22.027 |
|
[22] |
翁永玲, 戚浩平, 方洪宾, 赵福岳, 路云阁 . 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演. 土壤学报, 2010,47:1255-1263.
doi: 10.11766/trxb200907100306 |
Weng Y L, Qi H P, Fang H B, Zhao F Y, Lu Y G . PLSR-Based hyper-spectral remote sensing retrieval of soil salinity of Chaka-gonghe basin in Qinghai province. Acta Pedol Sin, 2010,47:1255-1263(in Chinese with English abstract).
doi: 10.11766/trxb200907100306 |
|
[23] |
刘全明, 成秋明, 王学, 李相君 . 河套灌区土壤盐渍化微波雷达反演. 农业工程学报, 2016,32(16):109-114.
doi: 10.11975/j.issn.1002-6819.2016.16.016 |
Liu Q M, Cheng Q M, Wang X, Li X J . Soil salinity inversion in Hetao Irrigation district using microwave radar. Trans CSAE, 2016,32(16):109-114 (in Chinese with English abstract).
doi: 10.11975/j.issn.1002-6819.2016.16.016 |
|
[24] |
王静, 刘湘南, 黄方, 唐吉龙, 赵冷冰 . 基于ANN技术和高光谱遥感的盐渍土盐分预测. 农业工程学报, 2009,25(12):161-166.
doi: 10.3969/j.issn.1002-6819.2009.12.029 |
Wang J, Liu X N, Huang F, Tang J L, Zhao L B . Salinity forecasting of saline soil based on ANN and hyper-spectral remote sensing. Trans CSAE, 2009,25(12):161-166 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-6819.2009.12.029 |
|
[25] |
Johnson L F, Hlavka C A, Peterson D L . Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect. Remote Sense Environ, 1994,47:216-230.
doi: 10.1016/0034-4257(94)90157-0 |
[26] |
Matson P, Johnson L, Billow C, Miller J, Pu R . Seasonal patterns and remote spectral estimation of canopy chemistry across the oregon transect. Ecol Appl, 1994,4:280-298.
doi: 10.2307/1941934 |
[27] |
Curran P J, Kupiec J A, Smith G M . Remote sensing the biochemical composition of a slash pine canopy. IEEE Trans Geosci Remote Sense, 1997,35:415-420.
doi: 10.1109/36.563280 |
[28] |
Peterson D L, Aber J D, Matson P A, Card D H, Swanberg N, Wessman C . Remote sensing of forest canopy and leaf biochemical contents. Remote Sense Environ, 1988,24:85-108.
doi: 10.1016/0034-4257(88)90007-7 |
[29] |
Yoder B J, Pettigrew-Crosby R E . Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sense Environ, 1995,53:199-211.
doi: 10.1016/0034-4257(95)00135-N |
[30] |
Chen L, Huang J F, Wang F M . Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyper-spectral data. Int J Remote Sense, 2007,28:3457-3478.
doi: 10.1080/01431160601024242 |
[31] |
刘平, 马美湖 . 基于高光谱技术检测全蛋粉掺假的研究. 光谱学与光谱分析, 2018,38:246-252.
doi: 10.3964/j.issn.1000-0593(2018)01-0246-07 |
Liu P, Ma M F . Application of hyper-spectral technology for detecting adulterated whole egg powder. Spectrosc Spect Anal, 2018,38:246-252 (in Chinese with English abstract).
doi: 10.3964/j.issn.1000-0593(2018)01-0246-07 |
|
[32] | 贾学勤, 冯美臣, 杨武德, 王超, 肖璐洁, 孙慧, 武改红, 张松 . 基于多植被指数组合的冬小麦地上干生物量高光谱估测. 生态学杂志, 2018,37:424-429. |
Jia X Q, Feng M C, Yang W D, Wang C, Xiao L J, Sun H, Wu G H, Zhang S . Hyper-spectral estimation of aboveground dry biomass of winter wheat based on the combination of vegetation indices. Chin J Ecol, 2018,37:424-429 (in Chinese with English abstract). | |
[33] | 孙红, 郑涛, 刘宁, 程萌, 李民赞, Zhang Q . 高光谱图像检测马铃薯植株叶绿素含量垂直分布. 农业工程学报, 2018,34(1):149-156. |
Sun H, Zheng T, Liu N, Cheng M, Li M Z, Zhang Q . Vertical distribution of chlorophyll in potato plants based on hyper-spectral imaging. Trans CSAE, 2018,34(1):149-156 (in Chinese with English abstract). | |
[34] | 郭云开, 刘宁, 刘磊, 李丹娜, 朱善宽 . 土壤Cu含量高光谱反演的BP神经网络模型. 测绘科学, 2018,43(1):135-139. |
Guo Y K, Liu N, Liu L, Li D N, Zhu S K . Hyper-spectral inversion of soil Cu content based on BP neural network model. Sci Survey Map, 2018,43(1):135-139 (in Chinese with English abstract). | |
[35] | 余蛟洋, 常庆瑞, 由明明, 张卓然, 罗丹 . 基于高光谱和BP神经网络模型苹果叶片SPAD值遥感估算. 西北林学院学报, 2018,33(2):156-165. |
Yu J Y, Chang Q R, You M M, Zhang Z R, Luo D . Estimation of apple leaf SPAD value based on hyperspectrum and BP Neural Network. J Northwest For Univ, 2018,33(2):156-165 (in Chinese with English abstract). | |
[36] |
Zagolski F, Pinel V, Romier J, Alcayde D, Fontanari J, Gastellu-Etchegorry J P . Forest canopy chemistry with high spectral resolution remote sensing. Int J Remote Sense, 1996,17:1107-1128.
doi: 10.1080/01431169608949073 |
[37] |
Pal M . Random forest classifier for remote sensing classification. Int J Remote Sense, 2005,26:217-222.
doi: 10.1080/01431160412331269698 |
[38] |
Deschamps B, Mcnairn H, Shang J, Jiao X . Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier. Can J Remote Sense, 2012,38:60-68.
doi: 10.5589/m12-012 |
[39] |
黄健熙, 侯矞焯, 苏伟, 刘峻明, 朱德海 . 基于GF-1 WFV数据的玉米与大豆种植面积提取方法. 农业工程学报, 2017,33(7):164-170.
doi: 10.11975/j.issn.1002-6819.2017.07.021 |
Huang J X, Hou Y Z, Su W, Liu J M, Zhu D H . Mapping corn and soybean cropped area with GF-1 WFV data. Trans CSAE, 2017,33(7):164-170 (in Chinese with English abstract).
doi: 10.11975/j.issn.1002-6819.2017.07.021 |
|
[40] |
陈纪波, 胡慧, 陈克垚, 王桂芝 . 基于非线性PLSR模型的气候变化对粮食产量的影响分析. 中国农业气象, 2016,37:674-681.
doi: 10.3969/j.issn.1000-6362.2016.06.007 |
Chen J B, Hu H, Chen K Y, Wang G Z . Effects of climate change on the grain yield based on nonlinear PLSR model. Chin J Agrometeorol, 2016,37:674-681 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2016.06.007 |
|
[41] |
于雷, 洪永胜, 耿雷, 周勇, 朱强, 曹隽隽, 聂艳 . 基于偏最小二乘回归的土壤有机质含量高光谱估算, 农业工程学报, 2015,31(14):103-109.
doi: 10.11975/j.issn.1002-6819.2015.14.015 |
Yu L, Hong Y S, Geng L, Zhou Y, Zhu Q, Cao J J, Nie Y . Hyperspectral estimation of soil organic matter content based on partial least squares regression. Trans CSAE, 2015,31(14):103-109 (in Chinese with English abstract).
doi: 10.11975/j.issn.1002-6819.2015.14.015 |
|
[42] |
Gomez C, Lagacherie P, Coulouma G . Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 2008,148:141-148.
doi: 10.1016/j.geoderma.2008.09.016 |
[43] |
刘晓莉, 杨灵娥, 宋春玲 . 提高多目标输出神经网络模型泛化能力和预测精度的方法. 佛山科学技术学院学报(自然科学版), 2008,26(1):31-33.
doi: 10.3969/j.issn.1008-0171.2008.01.009 |
Liu X L, Yang L E, Song C L . Improvement of the genera and the learn enlcienin BP network models. J Foshan Univ(Nat Sci Edn), 2008,26(1):31-33 (in Chinese with English abstract).
doi: 10.3969/j.issn.1008-0171.2008.01.009 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|