Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 204-213.doi: 10.3724/SP.J.1006.2019.84085
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
[1] |
卢坤, 申鸽子, 梁颖, 符明联, 贺斌, 铁琳梅, 张烨, 彭柳, 李加纳 . 适合不同产量的环境下油菜高收获指数的产量构成因素分析. 作物学报, 2017,43:82-96.
doi: 10.3724/SP.J.1006.2017.00082 |
Lu K, Shen G Z, Liang Y, Fu M L, He B, Tie L M, Zhang Y, Peng L, Li J N . Analysis of yield components with high harvest index in Brassica napus under environments fitting different yield levels. Acta Agron Sin, 2017,43:82-96 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00082 |
|
[2] | Irfan M, Alam J, Ahmad I, Ali I, Gul H . Effects of exogenous and foliar applications of brassinosteroid (BRs) and salt stress on the growth, yield and physiological parameters of Lycopersicon esculentum(Mill.). Plant Sci Today, 2017,4:88-101. |
[3] |
Thussagunpanit J, Jutamanee K, Kaveeta L, Chaiarree W, Pankean P, Homvisasevongsa S, Suksamrarn A . Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul, 2015,34:320-331.
doi: 10.1007/s00344-014-9467-4 |
[4] |
Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298.
doi: 10.1038/srep28298 pmid: 4915011 |
[5] |
Oh E, Zhu J Y, Wang Z Y . Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012,14:802-809.
doi: 10.1038/ncb2545 pmid: 22820378 |
[6] | 杨剑飞, 王宇, 杨琳, 李玉花 . 光敏色素互作因子 PIFs 是整合多种信号调控植物生长发育的核心元件. 植物生理学报, 2014,50:1109-1118. |
Yang J F, Wang Y, Yang L, Li Y H . Phytochrome-interacting factors integrate multiple signals to control plant growth and development. Plant Physiol J, 2014,50:1109-1118 (in Chinese with English abstract). | |
[7] |
Huq E, Quail P H . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496 |
[8] |
Castillon A, Shen H, Huq E . Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 2007,12:514-521.
doi: 10.1016/j.tplants.2007.10.001 |
[9] |
Casson S A, Franklin K A, Gray J E, Grierson C S, Whitelam G C, Hetherington A M . Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol, 2009,19:229-234.
doi: 10.1016/j.cub.2008.12.046 pmid: 19185498 |
[10] |
Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A . High temperature-mediated adaptations inplant architecture require the bHLH transcription factor PIF4. Curr Biol, 2009,19:408-413.
doi: 10.1016/j.cub.2009.01.046 pmid: 19249207 |
[11] |
Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Wigge P A . Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011,108:20231-20235.
doi: 10.1073/pnas.1110682108 |
[12] |
Xu H, Liu Q, Yao T, Fu X . Shedding light on integrative GA signaling. Curr Opin Plant Biol, 2014,21:89-95.
doi: 10.1016/j.pbi.2014.06.010 pmid: 25061896 |
[13] |
Bernardo-García S, Lucas M, Martínez C, Espinosa-Ruiz A, Davière J M, Prat S . BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev, 2014,28:1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420 |
[14] |
韩霜, 陈素梅, 蒋甲福, 房伟民, 管志勇, 陈发棣 . 弱光下菊花‘清露’的激素水平及相关基因表达. 中国农业科学, 2015,48:324-333.
doi: 10.3864/j.issn.0578-1752.2015.02.12 |
Han S, Chen S M, Jiang J F, Fang W M, Guan Z Y, Chen F T . Hormone levels and gene expression analysis of chrysanthemum cultivar ‘puma sunny’ under low light intensity. Sci Agric Sin, 2015,48:324-333 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.02.12 |
|
[15] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Corréa M . Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[16] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez Gacía J F, Bilbao-Castro J R, Robertson D L . Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010,153:1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[17] |
Feller A, Machemer K, Braun E L, Grotewold E . Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011,66:94-116.
doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626 |
[18] | Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8. |
[19] |
Kumar S V, Lucyshyn D, Jaeger K E, Alós E, Alvey E, Harberd N P, Wigge P A . Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012,484:242-245.
doi: 10.1038/nature10928 pmid: 22437497 |
[20] |
Lucas M, Prat S . PIFs get BR right: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol, 2014,202:1126-1141.
doi: 10.1111/nph.12725 pmid: 24571056 |
[21] |
Choi H, Oh E . PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol Cell, 2016,39:587-593.
doi: 10.14348/molcells.2016.0126 pmid: 4990750 |
[22] |
Wei Z, Yuan T, Tarkowská D, Kim J, Nam H G, Novák O, Li J . Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4 and PIF5. Plant Physiol, 2017,174:1260-1273.
doi: 10.1104/pp.16.01778 pmid: 28438793 |
[23] |
Wang Z Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Chory J . Nuclear-localized BZR1 mediates brassinosteroid- induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002,2:505-513.
doi: 10.1016/S1534-5807(02)00153-3 pmid: 11970900 |
[1] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[2] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[3] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[4] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[5] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[6] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[7] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
[8] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[9] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[10] | QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786. |
[11] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[12] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[13] | LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198. |
[14] | HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289. |
[15] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
|