Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (5): 792-797.doi: 10.3724/SP.J.1006.2019.84104
• RESEARCH NOTES • Previous Articles Next Articles
Han-Yu WU1,3,Fei XIAO1,Ya-Li ZHANG2,Chuang-Dao JIANG3,*(),Wang-Feng ZHANG2,*()
[1] |
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I . Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007,1767:414-421.
doi: 10.1016/j.bbabio.2006.11.019 |
[2] |
David J K, Zalik S . Photosystem II activity, plastoquinone A levels, and fluorescence characterization of a virescens mutant of barley. Plant Physiol, 1982,70:1026-1031.
doi: 10.1104/pp.70.4.1026 |
[3] | Takahashi S, Murata N . Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta, 2005,1780:352-361. |
[4] |
Nishiyama Y, Allakhverdiev S, Murata N . Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res, 2005,84:1-7.
doi: 10.1007/s11120-004-6434-0 |
[5] |
Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F . Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012,235:819-828.
doi: 10.1007/s00425-011-1544-3 |
[6] | Terashima L, Funayama S, Sonoike K . The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 1994,193:300-306. |
[7] |
Zhang S P, Scheller H V . Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004,45:1595-1602.
doi: 10.1093/pcp/pch180 |
[8] |
Huang W, Zhang S B, Cao K F . The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynth Res, 2010,103:175-182.
doi: 10.1007/s11120-010-9539-7 |
[9] |
Tikkanen M, Mekala N R, Aro E M . Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim Biophys Acta, 2014,1837:210-215.
doi: 10.1016/j.bbabio.2013.10.001 |
[10] |
Tikkanen M, Grebe S . Switching off photoprotection of photosystem I: a novel tool for gradual PSI photoinhibition. Physiol Plant, 2018,162:156-161.
doi: 10.1111/ppl.2018.162.issue-2 |
[11] |
Li X G, Wang X M, Meng Q W, Zou Q . Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica, 2004,42:257-262.
doi: 10.1023/B:PHOT.0000040598.48732.af |
[12] | Zhang Z S, Jia Y J, Gao H Y, Zhang H T, Li H D, Meng Q W . Characterization of PSI recovery after chilling-induced photoinhibition in cucumber ( Cucumis stativus L.) leaves. Planta, 2011,234:883-889. |
[13] |
Sejima T, Takagi D, Fukayama H, Makino A, Miyake C . Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061 |
[14] |
Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev S I . Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res, 2015,126:449-463.
doi: 10.1007/s11120-015-0121-1 |
[15] |
Suzuki K, Ohmori Y, Ratel E . High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. Plant Cell Physiol, 2011,52:1697-1707.
doi: 10.1093/pcp/pcr104 |
[16] | Kramer D M, Johnson G, Kiirats O, Edwards G E . New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79:209-218. |
[17] | Genty B, Briantais J M, Bake N R . The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989,1:87-92. |
[18] | Pfündel E, Klughammer C, Schreiber U . Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes, 2008,1:21-24. |
[19] | Schreiber U, Klughammer C . New accessory for the DUAL- PAM-100: the P515/535 module and examples of its application. PAM Appl Notes, 2008,1:1-10. |
[20] | Klughammer C, Schreiber U . Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Notes, 2008,1:27-35. |
[21] | Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E M . PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell, 2012,24:2934-2948. |
[22] | Sonoike K, Terashima I . Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994,194:287-293. |
[23] |
Sonoike K . Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996,37:239-247.
doi: 10.1093/oxfordjournals.pcp.a028938 |
[24] |
Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C . Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant, 2017,161:56-74.
doi: 10.1111/ppl.2017.161.issue-1 |
[25] |
Liu Y F, Qi M F, Li T L . Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012,196:8-17.
doi: 10.1016/j.plantsci.2012.07.005 |
[26] |
Sato R, Kono M, Harada K, Ohta H, Takaichi S, Masuda S . FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, conserved in oxygenic phototrophs, regulates H + homeostasis and non-photochemical quenching in chloroplasts . Plant Cell Physiol, 2017,58:1622-1630.
doi: 10.1093/pcp/pcx110 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331. |
[13] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[14] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[15] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
|