Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1221-1229.doi: 10.3724/SP.J.1006.2019.83082

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Establishment and application of spring maize leaf longevity model based on Gaussian function

LI Yao-Yao,FAN Pan-Pan,MING Bo,WANG Chun-Xia,WANG Ke-Ru,HOU Peng,XIE Rui-Zhi(),LI Shao-Kun()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Beijing 100081, China
  • Received:2018-12-11 Accepted:2019-04-15 Online:2019-08-12 Published:2019-07-16
  • Contact: Rui-Zhi XIE,Shao-Kun LI E-mail:xieruizhi@caas.cn;lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300302);China Agriculture Research System(CARS-02-20);the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Abstract:

Leaf longevity is a key factor affecting photosynthetic productivity. The quantitative evaluation of canopy leaf longevity is of significance for maize plant growth and yield formation. The experiments were conducted in the experiment station of Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, Gongzhuling, Jilin province in 2015-2017. The dates of leaf expanded and senesced at each leaf position were recorded from fixed plants of Xianyu 335 and Zhengdan 958. The maize leaf longevity model was established based on Gaussian function ($y=a+b\times {{\text{e}}^{\frac{-{{\left( x-c \right)}^{2}}}{2{{d}^{2}}}}}$) with 2015 and 2016 test data, and validated with 2017 data. The physiological significance of model parameters was specified and the method developing leaf longevity model was simplified. The maize leaf longevity model constructed under the research conditions had good inter-annual stability and large differentiation ability across cultivars. By further analyzing, five turning points were definitely well fitted to establish this model, which greatly simplified the data requirements for developing this model and the possibility of using this model to group the maize leaves was discussed. The five turning points were these calculated by the first derivative (the point for maximum longevity), the second derivative (the point for the highest rate of longevity), and the third derivative (the point for longevity beginning to increase rapidly) equal to zero, also the topmost leaf position (n) and the bottom leaf position. This study provides ideas and methods for analyzing the maize leaf productive ability quantitatively, and the reference for improving various maize growth models and other related researches.

Key words: maize, leaf longevity, Gaussian function, growth model

Fig. 1

Maximum, minimum, and average temperature from April to September in 2015-2017 The gray area represents the temperature range, and the black line represents the average temperature."

Table 1

Development progress from 2015 to 2017 (month/day) "

年份
Year
播种日期
Sowing date
出苗日期
Emergence date
收获日期
Harvest date
初霜日期
First frost date
2015 05/01 05/22 09/26 10/16
2016 04/29 05/20 09/23 09/28
2017 04/27 05/21 09/30 09/30

Fig. 2

Leaf expanded and senescence time at different leaf positions Fig. A shows the leaf expanded and senescence time of Xianyu 335, and Fig. B shows the leaf expanded and senescence time of Zhengdan 958. The solid circle represents the days from sowing to leaf expanded, the hollow circle represents the days from sowing to leaf senescence, and the dashed line represents the position of ear leaf."

Fig. 3

Fitting of leaf longevity in 2015 and 2016 The dashed line represents the position of ear leaf. XY335: Xianyu 335; ZD958: Zhengdan 958."

Fig. 4

Comparison between simulated and measured values XY335表示先玉335, ZD958表示郑单958。XY335: Xianyu 335; ZD958: Zhengdan 958."

Table 2

Model parameters of the leaf longevity"

品种
Cultivar
模型参数 Model parameter
a b a+b c d
先玉335 Xianyu 335 214.30 636.47 850.76 15.92 6.71
郑单958 Zhengdan 958 195.48 683.29 878.77 16.00 6.89

Table 3

Feature analysis of Gaussian model"

求导公式
Derivation formula
转折点
Turning point
转折叶位 Turning leaf position
先玉335 Xianyu 335 郑单958 Zhengdan 958
1 1 1
$f{{\left( x \right)}^{\prime }}{{^{\prime }}^{\prime }}=\frac{b}{{{d}^{2}}}\times {{\text{e}}^{-\frac{{{\left( x-c \right)}^{2}}}{2{{d}^{2}}}}}\times \frac{\left( x-c \right)}{{{d}^{2}}}\times \left[ 3-\frac{{{\left( x-c \right)}^{2}}}{{{d}^{2}}} \right] $ $f{{\left( x \right)}^{\prime }}{{^{\prime }}^{\prime }}=0,\ \ \ \ \ \ x=c,c\pm \sqrt{3}d$ 4 4
$f{{\left( x \right)}^{\prime }}^{\prime }=\frac{b}{{{d}^{2}}}\times {{\text{e}}^{-\frac{{{\left( x-c \right)}^{2}}}{2{{d}^{2}}}}}\times \left[ \frac{{{\left( x-c \right)}^{2}}}{{{d}^{2}}}-1 \right] $ $f{{\left( x \right)}^{\prime }}^{\prime }=0,\ \ \ \ \ \ x=c\pm d$ 9 9
$f{{\left( x \right)}^{\prime }}=\frac{b}{{{d}^{2}}}\times {{\text{e}}^{-\frac{{{\left( x-c \right)}^{2}}}{2{{d}^{2}}}}}\times \left( x-c \right) $ $f{{\left( x \right)}^{\prime }}=0,\ \ \ \ \ \ x=c$ 16 16
n 20 22

Fig. 5

Fitting diagram of five leaf positions during the leaf longevity from 2015 to 2017 The dashed line represents the position of ear leaf. XY335: Xianyu 335; ZD958: Zhengdan 958."

Fig. 6

Comparison between simulated and measured values XY335: Xianyu 335; ZD958: Zhengdan 958."

Fig. 7

Schematic diagram of leaf grouping S1: a slow-growing leaf group; S2: a fast-growing leaf group; S3: a slow-declining leaf group."

Table 4

Leaf grouping interval"

分组区间
Grouping interval
区间 Interval length
起始点
Initial point
终止点
Termination point
先玉335
Xianyu 335
郑单958
Zhengdan 958
S1 1 $c-\sqrt{3}d$ (1, 4) (1, 4)
S2 $c-\sqrt{3}d$ c (5, 16) (5, 16)
S3 c n (17, 21) (17, 22)
95% $c-d\times \sqrt{-2\times \ln \left( 0.95-\frac{0.05a}{b} \right)}$ $c+d\times \sqrt{-2\times \ln \left( 0.95-\frac{0.05a}{b} \right)}$ (14, 18) (14, 18)
[1] 陈国平 . 玉米的干物质生产与分配(综述). 玉米科学, 1994,2(1):48-53.
Chen G P . Dry matter production and distribution of maize (review). J Maize Sci, 1994,2(1):48-53 (in Chinese).
[2] 董树亭, 高荣岐, 胡昌浩, 王群瑛, 王空军 . 玉米花粒期群体光合性能与高产潜力研究. 作物学报, 1997,23:318-325.
Dong S T, Gao R Q, Hu C H, Wang Q Y, Wang K J . Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin, 1997,23:318-325 (in Chinese with English abstract).
[3] Lizaso J I, Batchelor W D, Westgate M E . A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crops Res, 2003,80:1-17.
doi: 10.1016/S0378-4290(02)00151-X
[4] 罗瑶年, 张建华, 李霞 . 玉米叶片的衰老. 玉米科学, 1992,0(1):40-43.
Luo Y N, Zhang J H, Li X . Senescence of maize leaves. J Maize Sci, 1992,0(1):40-43 (in Chinese).
[5] 王志刚 . 超高产春玉米根冠结构、功能特性及农艺节水补偿机制研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2009.
Wang Z G . Structural and Functional Properties of Canopy and Root of Super High Yield Spring Maize & Agronomic Water Saving Compensatory Mechanism. PhD Dissertation of Inner Mongolla Agricultural University, Hohhot, Inner Mongolla, China, 2009 (in Chinese with English abstract).
[6] 张福喜, 蔡瑞国, 张敏, 李彦生, 韩金玲, 周印富, 王文颇 . 春玉米叶片生长动态变化及其对种植密度的响应. 河北科技师范学院学报, 2009,23(2):15-21.
Zhang F X, Cai R G, Zhang M, Li Y S, Han J L, Zhou Y F, Wang W P . Dynamic change of leaf growth in spring maize and its response to planting density. J Hebei Norm Univ Sci Tech, 2009,23(2):15-21 (in Chinese with English abstract).
[7] 李文娟 . 玉米(Zea mays L.)氮素营养生理及其与叶片衰老的关系. 中国农业科学院博士学位论文, 北京, 2012.
Li W J . Nitrogen Physiology and Its Relation to Leaf Senescence of Maize (Zea mays L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with English abstract).
[8] 张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟 . 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013,39:93-100.
Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q L . Changes of photochemistry activity during senescence of leaves in stay green and quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013,39:93-100 (in Chinese with English abstract).
[9] Wolfe D W, Henderson D W, Hsiao T C, Alvino A . Interactive water and nitrogen effects on senescence of maize: I. Leaf area duration, nitrogen distribution, and yield. Agron J, 1962,80:859-864.
[10] Trápani N, Hall A J . Effects of leaf position and nitrogen supply on the expansion of leaves of field grown sunflower (Helianthus annuus L.). Plant Soil, 1996,184:331-340.
[11] 朱玉芹, 杨双, 蔡鑫茹, 李万良, 李景和 . 玉米叶片早衰及子粒败育. 吉林农业科学, 2008,33(3):9-10.
Zhu Y Q, Yang S, Cai X R, Li W L, Li J H . Studies on leaves early ageing and kernels abortion of maize. J Jilin Agric Sci, 2008,33(3):9-10 (in Chinese with English abstract).
[12] 李军虎, 张翠绵, 杜义英, 霍立勇, 滕慧颖, 赵会薇 . 化控条件下密度对夏玉米产量及产量性状的影响. 玉米科学, 2014,22(3):72-76.
Li J H, Zhang C M, Du Y Y, Huo L Y, Teng H Y, Zhao H W . Effects of density on yield and yield traits of summer maize under chemical control. J Maize Sci, 2014,22(3):72-76 (in Chinese with English abstract).
[13] 杜桂娟, 张哲, 杨姝, 马凤江, 刘洋 . 浅谈玉米早衰及其调控. 辽宁农业科学, 2012, (2):58-61.
Du G J, Zhang Z, Yang S, Ma F J, Liu Y . Discussion on premature senescence of maize and its prevention technology. J Liaoning Agric Sci, 2012, (2):58-61 (in Chinese with English abstract).
[14] 刘小芳 . 玉米根系吸水调控机制. 中国科学院博士学位论文, 北京, 2013.
Liu X F . Corn Root Water Absorption Control Mechanism. PhD Dissertation of Chinese Academy of Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[15] 刘全永, 李林峰, 李娜, 寇艳玲, 邵瑞鑫, 杨青华 . 玉米早衰影响因素及其调控措施. 河南农业科学, 2015,44(5):18-21.
Liu Q Y, Li L F, Li N, Kou Y L, Shao R X, Yang Q H . Factors affecting premature senescence of maize and its controlling measures. J Henan Agric Sci, 2015,44(5):18-21 (in Chinese with English abstract).
[16] 熊炳霖, 王鑫月, 陈道钳, 王仕稳, 殷俐娜, 邓西平 . 苗期玉米叶片碳氮平衡与干旱诱导的叶片衰老之关系. 西北植物学报, 2016,36:534-541.
Xiong B L, Wang X Y, Chen D Q, Wang S W, Yin L N, Deng X P . Carbon/nitrogen balance associate with drought-induced leaf senescence in maize (Zea mays) seedling. Acta Bot Boreal-Occident Sin, 2016,36:534-541 (in Chinese with English abstract).
[17] Pereira A R . Simulation of ecophysiological processes of growth in several annual crops. Agric For Meteorol, 1992,57:312-314.
doi: 10.1016/0168-1923(92)90128-Q
[18] 谢云 , Kiniry J R. 国外作物生长模型发展综述. 作物学报, 2002,28:190-195.
Xie Y, Kiniry J R . A review on the development of crop modeling and its application. Acta Agron Sin, 2002,28:190-195 (in Chinese with English abstract).
[19] 林忠辉, 莫兴国, 项月琴 . 作物生长模型研究综述. 作物学报, 2003,29:750-758.
Lin Z H, Mo X G, Xiang Y Q . Research advances on crop growth models. Acta Agron Sin, 2003,29:750-758 (in Chinese with English abstract).
[20] 孙宁, 冯利平 . 利用冬小麦作物生长模型对产量气候风险的评估. 农业工程学报, 2005,21(2):106-110.
Sun N, Feng L P . Assessing the climatic risk to crop yield of winter wheat using crop growth models. Trans CSAE, 2005,21(2):106-110 (in Chinese with English abstract).
[21] Wei X, Holman I, Conway D, Lin E, Li Y . A crop model cross calibration for use in regional climate impacts studies. Ecol Modell, 2008,213:365-380.
doi: 10.1016/j.ecolmodel.2008.01.005
[22] Birch C J, Hammer G L, Rickert K G . Improved methods for predicting individual leaf area and leaf senescence in maize(Zea mays L.). Aust J Agric Res, 1998,49:249-262.
[23] Birch C J, Vos J, Putten P E L . Plant development and leaf area production in contrasting cultivars of maize grown in a cool temperate environment in the field. Eur J Agron, 2003,19:173-188.
doi: 10.1016/S1161-0301(02)00034-5
[24] Kim S H, Yang Y, Timlin D J, Fleisher D H, Dathe A, Reddy V R, Staver K . Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agron J, 2012,104:1523-1537.
doi: 10.2134/agronj2011.0321
[25] 李少昆 . 北方春玉米田间种植手册. 北京: 中国农业出版社, 2011. pp 112-113.
Li S K. North Spring Corn Field Planting Manual. Beijing: China Agriculture Press, 2011. pp 112-113(in Chinese).
[26] Abendroth L J, Elmore R W, Boyer M J, Marlay S K . Corn Growth and Development. Iowa: Iowa State University Extension, 2011. pp 6-7.
[27] Ittersum M K V, Leffelaar P A, Keulen H V, Kropff M J, Bastiaans L, Goudriaan J . On approaches and applications of the Wageningen crop models. Eur J Agron, 2003,18:201-234.
doi: 10.1016/S1161-0301(02)00106-5
[28] 邬定荣, 欧阳竹, 赵小敏, 于强, 罗毅 . 作物生长模型WOFOST在华北平原的适用性研究. 植物生态学报, 2003,27:594-602.
Wu D R, Ou-Yang Z, Zhao X M, Yu Q, Luo Y . The applicability research of WOFOST model in north China plant. Chin J Plant Ecol, 2003,27:594-602 (in Chinese with English abstract).
[29] Thorp K R, Hunsaker D J, French A N . Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Trans ASABE, 2010,53:251-262.
doi: 10.13031/2013.29490
[30] Lizaso J I, Boote K J, Jones J W, Porter C H, Echarte L, Westgate M E, Sonohat G . CSM-IXIM: A new maize simulation model for DSSAT version 4.5. Agron J, 2011,103:766-779.
doi: 10.2134/agronj2010.0423
[31] Asseng S, Keating B A, Fillery I R P, Gregory P J, Bowden J W, Turner N C, Palta J A, Abrecht D G . Performance of the APSIM-wheat model in western Australia. Field Crops Res, 1998,57:163-179.
doi: 10.1016/S0378-4290(97)00117-2
[32] Asseng S, Keulen H V, Stol W . Performance and application of the APSIM N wheat model in the Netherlands. Eur J Agron, 2000,12:37-54.
doi: 10.1016/S1161-0301(99)00044-1
[33] 王忠孝 . 山东玉米. 北京:中国农业出版社, 1999. pp 87-88.
Wang Z X . Shandong Corn. Beijing: China Agriculture Press, 1999. pp 87-88(in Chinese).
[34] 任其云 . 玉米不同生长阶段“生长中心”和“供长中心叶”的探讨. 植物学报, 1975,17:66-70.
Ren Q Y . Studies on “Growth Center” and “Growth Center Leaf” at different stages of development in the corn plant. Acta Bot Sin, 1975,17:66-70 (in Chinese with English abstract).
[35] 文宗群, 苑华, 陈庆惠 . Sc704玉米叶片生长、根系发育及穗分化观察. 新疆农业科学, 1989, (2):13-14.
Wen Z Q, Fan H, Chen Q H . Sc704 observation of leaf growth, root development and ear differentiation of maize. J Xinjiang Agric Sci, 1989, (2):13-14 (in Chinese).
[36] 谭凤梧 . 玉米叶片生长发育规律及其功能的研究. 沈阳农业大学学报, 1989,20(1):30-34.
Tan F W . Studies on maize leaf’s growth and development rhythm and its function. J Shenyang Agric Univ, 1989,20(1):30-34 (in Chinese).
[37] 张建华, 李霞 . 矿质元素对玉米三叶期幼苗生长的影响. 中国土壤与肥料, 1992, (1):32-35.
Zhang J H, Li X . Effect of mineral elements on growth of maize seedlings at three-leaf stage. Soil Fert Sci China, 1992, (1):32-35 (in Chinese).
[38] 郭庆法, 王庆成, 汪黎明 . 中国玉米栽培学. 上海: 上海科学技术出版社, 2004. pp 17-167.
Guo Q F, Wang Q C, Wang L M . Chinese Maize Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 2004. pp 17-167(in Chinese).
[39] 王洋, 齐晓宁, 邵金锋, 刘兆永, 李泽兴 . 遮阴对不同品种玉米叶片形态和功能的影响. 土壤与作物, 2009,25:450-453.
Wang Y, Qi X N, Zhao J F, Liu Z Y, Li Z X . Effects of shading at the whole growth stage on the leaf morphology and function of different maize varieties. Soil Crop, 2009,25:450-453 (in Chinese with English abstract).
[40] 范盼盼, 谢瑞芝, 明博, 李姚姚, 王克如, 侯鹏, 李少昆 . 基于不同叶位受光条件的玉米冠层光合生产能力分析. 玉米科学, 2017,25(5):68-72.
Fan P P, Xie R X, Ming B, Li Y Y, Wang K R, Li S K . Analysis of photosynthetic productivity of maize canopy based on light conditions of different leaf positions. J Maize Sci, 2017,25(5):68-72 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!