Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 614-630.doi: 10.3724/SP.J.1006.2020.93034

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan

JIN Rong1,2,LI Zhong2,YANG Yun2,ZHOU Fang1,DU Lun-Jing1,LI Xiao-Long1,KONG Fan-Lei1,YUAN Ji-Chao1,*()   

  1. 1 College Agronomy of Sichuan Agricultural University / Key Laboratory of Crop Physiology and Ecology and Cultivation of Sichuan Province, Chengdu 611130, Sichuan, China
    2 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2019-06-12 Accepted:2019-09-26 Online:2020-04-12 Published:2019-10-14
  • Contact: Ji-Chao YUAN E-mail:yuanjichao5@163.com
  • Supported by:
    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest(20150312705);the National Key Research and Developing Program of China (Dense Planting and Machine Harvesting)(2016YFD0300307);the National Key Research and Developing Program (China-Resource Efficient Mode)(2016YFD0300209)

Abstract:

In order to facilitate mechanical production, the corn production in parts of central Sichuan has gradually changed from the intercropping spring planting to the net summer planting. In order to clarify the population structure of the net summer maize for high yield and suitable for mechanization in the region, the effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize were studied with two-factor splitting test design. With the increase of planting density, the maize effective panicle increased, with a gradually decreased increase range, and finally decreased due to the increase of empty stalk and lodging. With the density increased, the angle between stem and leaf and the opening angle decreased, the leaf orientation value increased, the group transmittance decreased significantly, the extinction coefficient increased, and the spike length and middle diameter of the male and female spikes at the panicle differentiation and floret differentiation stages, the tassel spindle length and pairs spikelet number at the silking stage, as well as the total small flower number, the silking floret number, the fertilized floret number and the fertilization rate per plant decreased, while the degraded floret number, the abortive flower number and the abortion rate increased, which eventually led maize bald ear tip become longer, the grain number per panicle and 100-grain weight decreased significantly. With the increase of planting density, the yield increased first and then decreased, with the highest yield under 67,500 plants hm -2. For the average yield of two years, the treatment of 67,500 plants hm -2 had a significant increase of 17.00% and 14.03% compared with the treatments of 45,000 and 90,000 plants hm -2, respectively. In addition, under the density of 45,000 and 67,500 plants hm -2 for two years, the equal row spacing was better than the corresponding wide and narrow rows, and the maize plant type was compact in 60 cm row spacing treatment, which improved group light conditions and fertilization rate per plant, reduced small flower abortion rate, and increased maize yield. Under the density of 90,000 plants hm -2 in 2018, (110+50) cm wide and narrow treatment improved the ventilation and light transmission conditions in the field, promoted the differentiation of female and male ears, and increased the maize yield. Therefore, the high-yield cultivation of summer maize in the central Sichuan area should be performed by properly reducing row spacing and increasing plant density, which are suggested as (60+60) cm and 67,500 plants hm -2 respectively.

Key words: density, row spacing, maize, leaf type, photosynthetically active radiation, male and female spike, yield composition

Fig. 1

Average temperature and rainfall of the experiment site during the growing period of maize"

Fig. 2

Effects of density and row spacing on the growth status of maize leaves Different lowercase letters above the column indicate significant difference at the 0.05 probability level among treatments; A1, A2, and A3 represent planting densities of 45,000, 67,500, and 90,000 plants hm-2, respectively; B1, B2, B3, B4, and B5 represent row spacings of (60+60), (80+40), (80+80), (110+50), and (100+100) cm, respectively; Above, ear, and under represent 1st leaf above the ear, ear leaf, and 1st leaf under the ear, respectively."

Fig. 3

Effects of density and row spacing on maize population light transmittance A1, A2, and A3 represent planting densities of 45,000, 67,500, and 90,000 plants hm-2, respectively; B2-narrow, B4-narrow, B1-equal, B3-equal, B2-wide, B4-wide, and B5-equal represent row spacings of 40, 50, 60, 80, 80, 110, and 100 cm, respectively."

Table 1

Extinction coefficient equation [(ln(I/I0) = kh+a)] of corn population under different densities and configurations"

年份
Year
密度
Density
行距
Row spacing
消光系数方程
Logarithmic function
R2
2017 A1 B1-等 B1-equal ln(I/I0) = 0.0090h +2.5523 0.9696**
B2-宽 B2-wide ln(I/I0) = 0.0047h +3.5541 0.9531**
B2-窄 B2-narrow ln(I/I0) = 0.0106h +2.0671 0.9791**
B3-等 B3-equal ln(I/I0) = 0.0059h +3.2565 0.9735**
B4-宽 B4-wide ln(I/I0) = 0.0041h +3.7290 0.9239**
B4-窄 B4-narrow ln(I/I0) = 0.0102h +2.2405 0.9767**
B5-等 B5-equal ln(I/I0) = 0.0046h +3.6143 0.9384**
A2 B1-等 B1-equal ln(I/I0) = 0.0103h +2.1728 0.9674**
B2-宽 B2-wide ln(I/I0) = 0.0073h +2.8467 0.9763**
B2-窄 B2-narrow ln(I/I0) = 0.0122h +1.6108 0.9926**
B3-等 B3-equal ln(I/I0) = 0.0076h +2.7509 0.9598**
B4-宽 B4-wide ln(I/I0) = 0.0056h +3.3087 0.9575**
B4-窄 B4-narrow ln(I/I0) = 0.0112h +1.9446 0.9674**
B5-等 B5-equal ln(I/I0) = 0.0061h +3.1839 0.9775**
2018 A1 B1-等 B1-equal ln(I/I0) = 0.0077h +2.6975 0.9640**
B2-宽 B2-wide ln(I/I0) = 0.0061h +3.0639 0.9576**
B2-窄 B2-narrow ln(I/I0) = 0.0088h +2.2892 0.9760**
B3-等 B3-equal ln(I/I0) = 0.0071h +2.8679 0.9554**
B4-宽 B4-wide ln(I/I0) = 0.0056h +3.3071 0.9567**
B4-窄 B4-narrow ln(I/I0) = 0.0083h +2.5240 0.9855**
A2 B1-等 B1-equal ln(I/I0) = 0.0087h +2.2735 0.9735**
B2-宽 B2-wide ln(I/I0) = 0.0078h +2.5173 0.9739**
B2-窄 B2-narrow ln(I/I0) = 0.0091h+2.1131 0.9645**
B3-等 B3-equal ln(I/I0) = 0.0079h +2.5433 0.9878**
B4-宽 B4-wide ln(I/I0) = 0.0077h +2.8264 0.9424**
B4-窄 B4-narrow ln(I/I0) = 0.0088h +2.2422 0.9789**
A3 B1-等 B1-equal ln(I/I0) = 0.0108h +1.7759 0.9797**
B2-宽 B2-wide ln(I/I0) = 0.0102h +1.9959 0.9763**
B2-窄 B2-narrow ln(I/I0) = 0.0116h +1.4354 0.9661**
B3-等 B3-equal ln(I/I0) = 0.0104h +1.9499 0.9817**
B4-宽 B4-wide ln(I/I0) = 0.0100h +2.2203 0.9614**
B4-窄 B4-narrow ln(I/I0) = 0.0110h +1.6780 0.9755**

Table 2

Effects of density and row spacing on ear and tassel spikelet differentiation of maize"

时期
Stage
密度 Density 株行距配置
Row spacing
雌穗Ear 雄穗Tassel
长度
Length
(mm)
中部直径
Middle part
diameter (mm)
长度
Length
(mm)
中部直径
Middle part diameter (mm)
小穗分化期
Spikelet differentiation period
A1 B1 6.59 1.66 5.73 1.43
B2 5.61 1.55 5.68 1.06
B3 6.26 1.75 5.46 1.32
B4 5.32 1.98 4.84 0.96
B5 5.66 1.41 4.56 1.05
平均值Average 5.89 1.67 5.25 1.16
A2 B1 5.41 1.69 4.93 1.18
B2 5.11 1.46 4.85 1.06
B3 5.00 1.59 3.46 0.96
B4 4.56 1.57 3.32 0.97
B5 4.21 1.57 3.13 0.93
平均值Average 4.86 1.58 3.94 1.02
小花分化期
Floret differentiation period
A1 B1 24.63 4.11 22.58 4.36
B2 21.08 4.13 21.88 3.72
B3 22.20 4.26 20.32 3.98
B4 19.95 4.30 20.39 3.98
B5 20.01 4.03 20.46 3.49
平均值Average 21.57 4.17 21.13 3.91
A2 B1 18.28 3.83 21.37 3.95
B2 17.74 4.13 17.69 3.15
B3 14.49 4.11 17.93 3.49
B4 14.43 4.08 17.18 3.02
B5 13.44 3.89 17.12 3.09
平均值Average 15.68 4.01 18.26 3.34

Fig. 4

Morphological characteristics in spikelet differentiation and floret differentiation of young ear in maize a1-a5 represent A1B1-A1B5 at spikelet differentiation stage (June 29) respectively; b1-b5 represent A2B1-A2B5 at spikelet differentiation stage (June 29) respectively; c1-c5 represent A1B1-A1B5 at floret differentiation stage (July 7) respectively; d1-d5 represent A2B1-A2B5 at floret differentiation stage (July 7) respectively."

Fig. 5

Morphological characteristics in spikelet differentiation and floret differentiation of young tassel in maize a1-a5 represent A1B1-A1B5 of the spikelet differentiation stage (June 20) respectively; b1-b5 represent A2B1-A2B5 at spikelet differentiation stage (June 20) respectively; c1-c5 represent A1B1-A1B5 at floret differentiation stage (June 26) respectively; d1-d5 represent A2B1-A2B5 at floret differentiation stage (June 26) respectively."

Table 3

Effects of density and row spacing on tassel characteristics of maize"

年份
Year
密度
Density
株行距配置
Row spacing
主轴长度
Spindle length (cm)
分枝数
Branch number
成对小穗数
Spikelet number
2017 A1 B1 46.55 a 8.50 a 364.13 a
B2 46.25 a 8.25 a 348.00 ab
B3 45.90 a 8.75 a 344.00 b
B4 45.45 ab 8.25 a 342.50 b
B5 44.63 b 8.50 a 336.25 b
平均值Average 45.76 A 8.45 A 346.98 A
A2 B1 44.75 a 8.50 a 352.50 a
B2 43.45 ab 8.00 a 350.75 a
B3 43.18 b 8.50 a 341.75 a
B4 42.00 b 8.25 a 337.50 a
B5 42.00 b 8.00 a 335.00 a
平均值Average 43.08 A 8.25 A 343.50 A
F 密度 Density (D) 18.55* 3.00 2.71
F-value 行距Row spacing (R) 5.16** 0.38 3.02*
密度×行距D×R 0.52 0.10 0.27
2018 A1 B1 59.00 a 9.40 a 355.00 a
B2 58.60 a 8.80 a 326.40 ab
B3 57.30 ab 9.80 a 343.60 a
B4 56.00 b 9.40 a 319.40 b
平均值Average 57.73 A 9.35 A 336.10 A
A2 B1 56.70 ab 9.20 a 315.20 a
B2 58.50 a 8.80 a 314.60 a
B3 55.30 bc 9.20 a 312.60 a
B4 54.50 c 9.20 a 301.20 a
平均值Average 56.25 B 9.10 A 310.90 B
A3 B1 55.90 a 8.80 a 282.80 a
B2 55.50 a 8.60 a 270.80 a
B3 52.80 b 9.00 a 289.00 a
B4 55.80 a 9.20 a 289.00 a
平均值Average 55.00 B 8.90 A 282.90 C
F 密度 Density (D) 21.09** 0.34 29.29**
F-value 行距Row spacing (R) 8.08** 0.82 0.87
密度×行距 D×R 2.42* 0.11 0.55

Table 4

Effects of density and row spacing on ear characteristics of maize"

年份
Year
密度
Density
行距
Row spacing
分化的小花总数
No. of total florets
吐丝小花数
No. of silked florets
正常受精小花数No. of fertilized
florets
退化小花数No. of degenerated
florets
败育花数
No. of abortive
florets
花败育率
Abortion rate
of floret (%)
单株果穗受精率Fertilization rate per plant (%)
2017 A1 B1 925.67 a 877.00 a 809.00 a 48.67 b 116.67 b 12.60 b 92.24 a
B2 900.33 b 839.00 b 767.67 b 61.33 b 132.67 b 14.73 b 91.54 ab
B3 929.00 a 875.00 a 805.67 a 54.00 b 123.33 b 13.26 b 92.08 a
B4 927.00 a 873.00 a 795.00 a 54.00 b 132.00 b 14.24 b 91.08 ab
B5 930.00 a 825.67 b 745.00 c 104.33 a 185.00 a 19.89 a 90.26 b
平均值Average 922.40 A 857.93 A 784.47 A 64.47 A 137.93 A 14.94 A 91.44 A
A2 B1 898.00 b 832.67 ab 762.33 a 65.33 b 135.67 c 15.11 c 91.56 a
B2 881.33 c 811.67 b 741.33 a 69.67 b 140.00 c 15.88 c 91.31 a
B3 904.00 ab 837.00 a 761.00 a 67.00 b 143.00 c 15.81 c 90.92 a
B4 901.33 ab 822.00 ab 714.00 b 79.33 b 187.33 b 20.82 b 86.84 b
B5 918.67 a 789.00 c 673.33 c 129.67 a 245.33 a 26.67 a 85.39 b
平均值Average 900.67 A 818.47 A 730.40 A 82.20 A 170.27 A 18.86 A 89.20 A
FF-value 密度Density(D) 15.64 45.19* 21.88* 54.30* 60.49* 91.34* 1.11
行距 Row spacing (R) 6.65** 13.68** 21.52** 17.77** 19.54** 18.18** 13.12**
密度×行距(D×R) 0.47 0.60 2.75 0.41 2.10 2.08 4.62*
2018 A1 B1 910.83 a 849.17 b 776.67 a 61.67 a 134.17 c 14.73 c 91.52 a
B2 878.50 c 842.67 b 748.00 b 35.83 c 130.50 c 14.84 c 88.85 b
B3 919.17 a 883.00 a 745.67 b 36.17 c 173.50 a 18.83 a 84.42 c
B4 893.00 b 837.50 b 739.00 b 55.50 b 154.00 b 17.19 b 88.31 b
平均值Average 900.38 A 853.08 A 752.33 A 47.29 B 148.04 B 16.40 C 88.28 A
A2 B1 857.83 b 825.83 ab 715.33 a 32.00 c 142.50 c 16.61 c 86.69 a
B2 855.67 b 804.33 b 687.33 b 51.33 b 168.33 b 19.67 b 85.47 a
B3 901.17 a 844.00 a 702.17 ab 57.17 a 199.00 a 21.97 a 83.20 b
B4 874.83 b 816.50 b 670.17 c 58.33 a 204.67 a 23.40 a 82.29 b
平均值Average 872.38 B 822.67 B 693.75 B 49.71 AB 178.63 A 20.41 B 84.41 B
A3 B1 845.33 a 783.50 a 650.33 a 61.83 a 195.00 a 23.01 a 82.97 a
B2 807.50 b 749.00 b 617.33 b 58.50 a 190.17 a 23.47 a 82.40 a
B3 855.33 a 794.83 a 659.17 a 60.50 a 196.17 a 22.93 a 82.95 a
B4 862.67 a 801.33 a 667.33 a 61.33 a 195.33 a 22.62 a 83.28 a
平均值Average 842.71 C 782.17 C 648.54 C 60.54 A 194.17 A 23.01 A 82.90 B
FF-value 密度 Density(D) 67.38** 75.72** 190.38** 14.84* 39.14** 156.19** 49.98**
行距 Row spacing(R) 15.87** 9.31** 9.41** 12.28** 17.30** 20.11** 10.30**
密度×行距(D×R) 2.63 1.92 5.95** 32.37** 5.47** 9.30** 4.65**

Table 5

Effects of density and row spacing on maize yield and its composition"

年份Year 密度Density 行距
Row spacing
穗长
Ear length (cm)
秃尖
Bald length (cm)
穗粗
Ear diameter (cm)
空秆率Empty rate (%) 倒伏率Lodging rate (%) 行粒数
No. of kernels per line
穗粒数
No. of kernels per ear
百粒重
100-grain weight (g)
有效穗数
Effective number of spikes
产量
Yield (kg hm-2)
2017 A1 B1 18.12 a 0.97 b 4.86 a 0.33 a 3.72 a 43.06 a 706.52 a 26.47 a 45833.34 a 7080.28 a
B2 17.63 ab 1.23 ab 4.54 c 0.00 a 7.78 a 41.17 b 647.75 b 26.80 a 45061.73 a 6968.19 a
B3 17.97 a 1.20 ab 4.69 b 0.00 a 3.96 a 41.94 ab 698.76 a 26.47 a 43865.74 a 6889.22 ab
B4 17.50 b 1.03 b 4.54 c 0.00 a 4.32 a 41.84 ab 692.21 a 26.16 a 42939.82 ab 6542.59 bc
B5 18.02 a 1.65 a 4.63 b 0.00 a 2.95 a 41.90 ab 688.73 a 26.28 a 40277.78 b 6494.62 c
平均值Average 17.85 A 1.22 A 4.65 A 0.07 A 4.55 B 41.98 A 686.80 A 26.44 A 43595.68 B 6794.98 A
A2 B1 16.62 ab 1.23 b 4.51 a 0.07 b 5.96 b 40.41 a 651.69 a 23.35 a 66203.70 a 8617.63 a
B2 16.75 a 1.58 ab 4.41 b 0.68 a 13.06 a 39.07 ab 642.70 a 21.95 b 67746.92 a 8425.19 a
B3 16.80 a 1.48 ab 4.51 a 0.90 a 7.73 b 39.35 ab 650.86 a 23.10 a 62384.26 b 8190.65 a
B4 16.20 b 1.52 ab 4.40 b 0.60 a 13.02 a 38.27 b 621.90 a 23.73 a 60648.15 b 7639.54 b
B5 17.02 a 1.75 a 4.46 ab 0.00 b 6.46 b 39.14 ab 645.86 a 23.03 a 56388.89 c 7390.68 b
平均值 Average 16.68 A 1.51 A 4.46 A 0.45 A 9.25 A 39.25 A 642.60 B 23.03 A 62674.38 A 8052.74 A
F 密度Density (D) 26.18* 34.59* 16.88 4.47 108.54** 25.25* 169.86** 78.01* 202.51** 49.04*
F-value 行距 Row spacing (R) 3.41* 2.89 15.64** 1.34 3.68* 2.55 2.16 0.92 12.45** 9.57**
密度×行距 D×R 0.76 0.29 3.92* 2.80 0.89 0.39 1.68 3.43* 1.82 1.08
2018 A1 B1 17.59 b 1.89 a 5.07 b 3.11 a 3.15 a 37.39 ab 640.73 a 29.95 a 46969.70 a 7475.55 a
B2 18.04 a 2.01 a 5.13 a 3.59 a 3.94 a 36.60 c 623.44 b 29.49 a 45286.20 a 7128.53 b
B3 18.01 a 1.91 a 5.07 b 2.43 a 1.64 a 37.99 a 647.04 a 29.66 a 44570.71 a 7185.98 b
B4 17.98 a 2.11 a 5.07 b 1.86 a 1.87 a 36.93 bc 627.82 b 29.92 a 45959.60 a 7046.00 b
平均值 Average 17.90 A 1.98 A 5.08 A 2.75 A 2.65 A 37.23 A 634.76 A 29.75 A 45696.55 A 7209.02 B
A2 B1 16.81 ab 2.11 ab 4.96 a 2.28 a 6.90 a 32.96 a 561.20 a 29.59 a 63973.06 a 8783.38 a
B2 17.00 a 2.35 a 4.96 a 3.91 a 8.38 a 31.45 b 531.64 b 29.04 a 61952.86 a 8351.56 b
B3 16.62 b 1.90 bd 5.00 a 1.66 a 11.92 a 32.87 a 559.99 a 29.41 a 57449.49 b 7994.91 c
B4 16.71 b 2.10 bc 4.98 a 3.39 a 14.41 a 32.66 a 557.33 a 29.11 a 60732.32 a 8200.29 b
平均值 Average 16.79 AB 2.12 A 4.97 AB 2.81 A 10.40 A 32.49 B 552.54 B 29.28 AB 61026.94 A 8332.54 A
A3 B1 15.73 ab 2.36 a 4.85 ab 18.03 a 37.59 a 26.67 b 451.65 bc 28.36 a 63131.31 b 7090.71 b
B2 15.56 b 2.43 a 4.83 b 18.34 a 43.88 a 26.65 b 449.94 c 28.81 a 64141.41 ab 6888.06 b
B3 15.80 ab 2.08 b 4.87 ab 14.01 a 33.94 ab 27.57 b 468.68 b 28.94 a 63510.10 b 7094.03 b
B4 16.03 a 2.28 ab 4.89 a 7.07 b 26.16 b 28.97 a 492.50 a 28.99 a 68308.08 a 7665.79 a
平均值 Average 15.78 B 2.29 A 4.86 B 14.36 A 35.39 A 27.46 C 465.69 C 28.78 B 64772.73 A 7184.65 B
F 密度Density (D) 21.30** 8.80* 16.49* 4.71 8.30* 47.18** 48.49** 11.02* 7.78* 61.72**
F-value 行距 Row spacing (R) 2.09 4.35* 0.67 2.41 0.53 5.93** 9.47** 0.46 2.55 7.28**
密度×行距 D×R 4.31** 0.96 1.64 1.71 1.39 2.70* 4.08** 1.02 1.72 7.59**

Table 6

Correlation coefficients of ear and tassel characteristics with yield components and light transmittance of ear position layer"

指标
Index
穗长
Ear length
秃尖长
Bald length
穗粗
Ear diameter
行粒数
No. of kernels per line
穗粒数
No. of kernels per ear
百粒重
100-grain weight
穗位层透光率
Light transmittance of ear position layer
消光系数
Extinction coefficient
小穗分化期Spikelet differentiation 雌穗特性
Ear characteristics
长Length 0.78** -0.72* 0.89** 0.88** 0.80** 0.72* 0.16 0
中部直径Central diameter 0.15 0.22 -0.73* 0.37 0.43 0.32 0.02 0.07
雄穗特性
Tassel characteristics
长Length 0.66* -0.73* 0.64* 0.78** 0.60 0.64* 0.03 0.18
中部直径Central diameter 0.56 -0.62* 0.83** 0.67* 0.63* 0.44 -0.11 0.22
小花分化期Floret differentiation 雌穗特性
Ear characteristics
长Length 0.82** -0.75** 0.83** 0.92** 0.79** 0.79** 0.24 -0.01
中部直径Central diameter 0.40 -0.46 0.26 0.37 0.44 0.49 0.26 -0.21
雄穗特性
Tassel characteristics
长Length 0.69* -0.77** 0.74** 0.87** 0.65* 0.76** 0.17 0.08
中部直径Central diameter 0.65* -0.90** 0.81** 0.87** 0.78** 0.67* 0.05 0.12
吐丝期
Silking stage
雌穗特性
Ear characteristics
总小花数No. of total florets/ear 0.73** -0.77** -0.30 0.89** 0.91** -0.37 0.83** -0.75**
吐丝小花数No. of silked florets 0.79** -0.66** 0.10 0.72** 0.77** 0.02 0.53** -0.53*
受精小花数No. of fertilization florets 0.79** -0.82** -0.18 0.88** 0.89** -0.27 0.59** -0.50*
小花败育率Rate of floret barrenness -0.64** 0.65** 0.06 -0.66** -0.67** 0.13 -0.28 0.22
单株果穗受精率Fertilization rate per ear 0.64** -0.80** -0.41 0.85** 0.84** -0.48* 0.52* -0.39
雄穗特性
Tassel characteristics
成对小穗数Spikelet number 0.71** -0.82** -0.38 0.94** 0.93** -0.51* 0.58** -0.51*
[1] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(>15000 kg hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45:3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K . Effects of density on maize yield and yield components. Sci Agric Sin, 2012,45:3437-3445 (in Chinese with English abstract).
[2] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞 . 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34:447-455.
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P . Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008,34:447-455 (in Chinese with English abstract).
[3] 冀华, 李宏, 张树伟 . 玉米雌雄穗发育及其与产量的关系. 山西农业科学, 2011,39:754-755.
Ji H, Li H, Zhang S W . Differentiation and growth of the male and female ears and the relationship with yield in maize. J Shanxi Agric Sci, 2011,39:754-755 (in Chinese with English abstract).
[4] 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞 . 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015,20(6):9-15.
Gao Y B, Tao H B, Huang S B, Tian B J, Wang L J, Li Y, Ren J H, Wang P . Effects of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize . J China Agric Univ, 2015,20(6):9-15 (in Chinese with English abstract).
[5] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海 . 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016,42:104-112.
Chang J F, Zhang H H, Li H P, Dong P F, Li C H . Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016,42:104-112 (in Chinese with English abstract).
[6] 韩成卫, 孔晓民, 刘丽, 曾苏明 . 不同种植模式对玉米生长发育、产量及机械化收获效率的影响. 玉米科学, 2012,20(6):89-93.
Han C W, Kong X M, Liu L, Zeng S M . Contrast test for maize different planting patterns under the mechanize harvest. J Maize Sci, 2012,20(6):89-93 (in Chinese with English abstract).
[7] 梁秀兰, 张振宏 . 玉米穗分化与叶龄关系的研究. 华南农业大学学报, 1995, ( 3):83-87.
Liang X L, Zhang Z H . Study on the relationship between ear differentiation and leaf age in maize. J South China Agric Univ, 1995, ( 3):83-87 (in Chinese).
[8] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞 . 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P . Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract).
[9] 滕世云 . 玉米穗分化与叶龄的关系. 山西农业科学, 1983, ( 4):4-5.
Teng S Y . Relationship between ear differentiation and leaf age. J Shanxi Agric Sci, 1983, ( 4):4-5 (in Chinese).
[10] 曹彬, 张世杰, 孙占育, 曹三潮, 赵志红 . 玉米叶龄指数与穗分化回归关系的研究初报. 玉米科学, 2005,13(1):86-88.
Cao B, Zhang S J, Sun Z Y, Cao S C, Zhao Z H . Research report of regression relationship between leaf number index and spike differentiation in maize. J Maize Sci, 2005,13(1):86-88 (in Chinese with English abstract).
[11] 张养利, 李进仓, 张德仓 . 16个玉米新品种叶龄指数与穗分化关系的试验初报. 陕西农业科学, 2009,55(5):14-16.
Zhang Y L, Li J C, Zhang D C . Preliminary report on the relationship between leaf age index and ear differentiation of 16 new maize varieties. Shaanxi J Agric Sci, 2009,55(5):14-16 (in Chinese).
[12] 黄铨, 罗守德, 武殿林, 郭国光, 王先娥 . 玉米穗分化时期与植株外部形态及叶龄指数相互关系的研究. 山西农业科学, 1981, ( 10):6-8.
Huang Q, Luo S D, Wu D L, Guo G G, Wang X E . Study on the relationship between the ear differentiation stage of maize and the external morphology and leaf age index of plants. Shanxi J Agric Sci, 1981, ( 10):6-8 (in Chinese).
[13] 李春奇, 郑慧敏, 李芸, 李潮海 . 种植密度对夏玉米雌穗发育和产量的影响. 中国农业科学, 2010,43:2435-2442.
Li C Q, Zheng H M, Li Y, Li C H . Effect of planting density on the yield and development of maize ear. Sci Agric Sin, 2010,43:2435-2442 (in Chinese with English abstract).
[14] 徐正进, 董克 . 水稻叶片基角、开张角和披垂度的同时测定方法. 沈阳农业大学学报, 1991,22(2):185-187.
Xu Z J, Dong K . Simultaneous determination method of base angle, opening angle and sag of rice leaves. J Shenyang Agric Univ, 1991,22(2):185-187 (in Chinese).
[15] Wang Q, Niu Y . Effects of altered source-sink ratio on canopy, photosynthetic rate and yield of maize ( Zea mays L.). Photosynthetica, 1996,32:271-276.
[16] 孟佳佳, 董树亭, 石德杨, 张海燕 . 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013,39:912-918.
Meng J J, Dong S T, Shi D Y, Zhang H Y . Relationship of ear differentiation with kernel development and barrenness in maize ( Zea mays L.) . Acta Agron Sin, 2013,39:912-918 (in Chinese with English abstract).
[17] Mohammadi G R, Ghobadi M E, Sheikhehpoor S . Phosphate biofertilizer, row spacing and plant density effects on corn yield and weed growth. Am J Plant Sci, 2012,3:425-429.
[18] 代旭峰, 王国强, 刘志斋, 王久光, 马宇, 蔡一林 . 不同密度下不同行距对玉米光合及产量的影响. 西南大学学报(自然科学版), 2013,35(3):15-21.
Dai X F, Wang G Q, Liu Z Z, Wang J G, Ma Y, Cai Y L . Effects of different row spacing on photosynthesis and yield of maize under different densities. J Southwest Univ(Nat Sci Edn), 2013,35(3):15-21 (in Chinese with English abstract).
[19] Maddonni G A, Chelle M, Drouet J L, Andrieu B . Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res, 2001,70:1-13.
[20] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1233 (in Chinese with English abstract).
[21] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆 . 不同施氮方式对宽窄行交替休闲种植玉米产量和光合特性的影响. 草业学报, 2012,21(1):34-42.
Liu C W, Zhang E H, Xie R Z, Liu W R, Li S K . Effect of different nitrogen methods on yield and photosynthesis of maize under the alternative fallow high stubble about narrow row and wide row. Acta Pratac Sin, 2012,21(1):34-42 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[12] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!