Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 819-831.doi: 10.3724/SP.J.1006.2020.93063

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association studies of leaf orientation value in maize

PENG Bo1,ZHAO Xiao-Lei1,WANG Yi1,YUAN Wen-Ya1,LI Chun-Hui2,LI Yong-Xiang2,ZHANG Deng-Feng2,SHI Yun-Su2,SONG Yan-Chun2,WANG Tian-Yu2,*(),LI Yu2,*()   

  1. 1Tianjin Crop Research Institute / Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin 300384, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-12-03 Accepted:2020-01-15 Online:2020-06-12 Published:2020-02-17
  • Contact: Tian-Yu WANG,Yu LI E-mail:wangtianyu@caas.cn;liyu03@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31601308);Innovative Research and Experiment Project for Young Researchers(2018004);Tianjin Natural Science Foundation(19JCZDJC34500);President’s Fund of Tianjin Academy of Agricultural Sciences(17007)

Abstract:

Leaf orientation value is a comprehensive index reflecting the two characteristics of “straight” and “vertical” of leaves. The varieties with high leaf orientation value have straight and not curved leaves, and small angle, which are conducive to the wind ventilation and light transmission for maize population. When the planting density is high, it is easier to obtain high yield than the expanded plant-type. It is of great significance for molecular design breeding of ideal plant type to clarify the genetic basis of leaf orientation value. In this study, 285 diverse lines genotyped by the MaizeSNP50 chip were evaluated for leaf orientation in 2017 and 2018. The genome-wide association analysis (GWAS) were used to identified the SNPs, which were significant association with leaf orientation values. The analysis of variance showed that the significant variations were observed for leaf orientation value of different inbred lines (P < 0.01). In the selection of the optimal model, it was found that the Q + K model was the most suitable for the leaf orientation association analysis in this study. A total of 15 loci (P < 4.05E-5) were detected by GWAS, including 27 SNPs, explaining 5.54%-8.73% of phenotypic variation, and 15 candidate genes were mined in two years. Among them, site 2 in 1.07 bin was an important site found in this study, and its candidate gene might be Zm00001d032050 encoding cyclin dependent protein kinase, which needed to be further confirmed by map-based cloning.

Key words: maize, leaf orientation value, leaf angle, single nucleotide polymorphism, association analysis

Table 1

Basic stastical analysis and correlation coefficients of leaf orientation value in two years"

年份
Year
均值
Mean
变异范围
Range
标准差
SD
偏度
Skewness
峰度
Kurtosis
相关系数Correlation coefficient
2017 2018
2017 59.45 12.99-86.28 13.77 -0.58 0.13
2018 63.86 17.05-90.00 13.11 -0.79 0.59 0.75**
BLUP 61.58 23.46-82.65 11.14 -0.63 0.30 0.95** 0.90**

Fig. 1

Frequency distribution of leaf orientation value in two years A: Year of 2017; B: Year of 2018; C: BLUP for combined 2 years. "

Table 2

Analysis of variance (ANOVA) for leaf orientation value in two years"

变异来源
Variation source
方差分量
Variance
遗传力
H2 (%)
基因型 Genotype 141.46** 87.86
年份Year 8.97**
基因型×年份 Genotype×year 21.41**
重复Replication 14.63
残差Residual 35.32

Fig. 2

Picture of whole-genome LD in the panel of 285 lines"

Fig. 3

Quantile-quantile (QQ) plots resulting from GWAS results using three methods for leaf orientation value in two years A: Year of 2017; B: Year of 2018; C: BLUP for combined two years. Green spot: Q model; blue spot: K model; purple spot: Q+K model. "

Fig. 4

Manhattan plots resulting from GWAS results using Q+K methods for leaf orientation value in two years A: Year of 2017; B: Year of 2018; C: BLUP for combined two years. Green spots: the Manhattan plots of 50 SNPs in the upstream and downstream of lead SNP at site 2 in two years. "

Table 3

Significant SNPs and candidate genes associated with leaf orientation value identified by GWAS in two years"

位点a
Locusa
Bin 年份
Year
SNP 基因型
Genotype
物理位置b
Physical position
P
P-value
贡献率
R2 (%)
峰值SNP
物理位置b
Lead SNP physical position
QTL区间b QTL region b 候选基因
Candidate gene
基因功能注释
Gene annotation
-LD +LD
1 1.02 BLUP PUT-163a-149085801-877 [A/G] 28,638,770 9.25E-06 7.95 28,638,770 28,306,770 28,638,770 Zm00001d028265 细胞分裂素响应因子
Cytokinin response regulator
1 1.02 2017 PUT-163a-149085801-877 [A/G] 28,638,770 3.21E-06 8.73
2 1.07 BLUP PZE-101164453 [T/C] 210,517,983 3.22E-05 6.94 211,113,165 210,781,165 211,445,165 Zm00001d032050 细胞周期蛋白依赖性蛋白激酶
Regulation of cyclin-dependent protein serine/threonine kinase activity
2 1.07 BLUP PZE-101164815 [A/G] 210,772,541 1.16E-06 8.15
2 1.07 2017 PZE-101164815 [A/G] 210,772,541 9.67E-07 8.49
2 1.07 2018 PZE-101164815 [A/G] 210,772,541 2.71E-05 6.24
2 1.07 2017 SYN25384 [A/G] 211,113,165 3.97E-05 6.99
2 1.07 BLUP SYN25375 [T/C] 211,116,324 1.90E-05 7.32
2 1.07 2017 SYN25375 [T/C] 211,116,324 3.78E-05 6.93
3 1.07 BLUP PZE-101165699 [A/G] 211,785,378 2.04E-05 7.55 211,785,378 211,453,378 212,117,378 Zm00001d032078 细胞分裂周期相关蛋白激酶
Cell division cycle 2-related protein kinase 7
3 1.07 2017 PZE-101165699 [A/G] 211,785,378 3.02E-05 7.30
4 1.07 BLUP PZE-101166565 [A/G] 212,687,705 1.20E-06 7.65 212,687,705 212,355,705 213,019,705 Zm00001d032100 果胶酶/果胶酶抑制剂
Pectinesterase/pectinesterase inhibitor 13
4 1.07 2017 PZE-101166565 [A/G] 212,687,705 5.31E-06 6.93
4 1.07 2018 PZE-101166565 [A/G] 212,687,705 9.69E-06 6.67
5 1.08 BLUP PZE-101196520 [A/G] 248,302,322 1.38E-05 7.78 248,302,322 247,970,322 248,634,322 Zm00001d033047 含SPX结构域蛋白
SPX domain-containing protein 3
6 1.08 2017 PZE-101199858 [T/C] 252,942,320 2.99E-05 6.73 252,942,320 252,610,320 253,274,320 Zm00001d033180 油菜素内酯缺乏性矮秆基因 Brassinosteroid-deficient dwarf1,brd1
6 1.08 2017 PZE-101199859 [A/G] 252,942,792 2.99E-05 6.73
7 2.01 BLUP SYN9223 [A/G] 3,825,340 3.71E-05 7.11 3,825,340 3,526,340 4,124,340 Zm00001d001968 细胞周期相关蛋白
Cyclin-related
8 2.04 BLUP PZE-102062747 [A/C] 43,019,177 1.98E-05 7.91 43,019,177 42,720,177 43,318,177 Zm00001d003401 类似14-3-3蛋白
14-3-3-like protein GF14-6
9 2.04 BLUP SYN29642 [T/C] 50,700,996 3.50E-05 6.15 50,700,996 50,401,996 50,999,996 Zm00001d003626 NAC-转录因子
NAC-transcription factor 76
10 2.07 2017 PZE-102150850 [T/G] 203,858,592 3.50E-05 6.82 203,858,592 203,559,592 204,157,592 Zm00001d006293 NLP转录因子
NLP-transcription factor 17
11 2.07 BLUP PZE-102152182 [A/G] 205,338,006 3.24E-05 5.54 205,338,006 205,039,006 205,637,006 Zm00001d006348 生长调节因子
Growth-regulating factor 9
12 5.06 BLUP PZE-105142621 [A/G] 201,997,615 9.76E-06 7.70 201,997,615 201,615,615 202,379,615 Zm00001d017618 ABI3-VP1-转录因子
ABI3-VP1-transcription factor 16
12 5.06 2017 PZE-105142621 [A/G] 201,997,615 1.72E-05 7.52
13 7.02 BLUP PZE-107043106 [A/G] 87,913,892 3.32E-05 8.24 87,913,892 87,468,892 88,358,892 Zm00001d020041 参与细胞壁果胶代谢蛋白
Cell wall pectin metabolic process
14 10.03 2017 PZE-110020884 [T/C] 28,391,702 2.32E-05 7.65 28,391,702 27,697,702 29,085,702 Zm00001d023927 锌指CCCH结构域蛋白
Zinc finger CCCH domain-containing protein 30
15 10.04 BLUP PZE-110053328 [A/G] 100,750,723 4.02E-05 6.73 100,750,723 100,056,723 101,444,723 Zm00001d025033 TCP转录因子
TCP-transcription factor 40

Fig. 5

Distribution of the loci significantly association with leaf orientation value detected in this study on chromosomes and the comparison with the results of previous studies Bin with bold on the chromosomes represents the site detected in this study that is significantly association with leaf orientation value. "

[1] Lambert R J, Johnson R R . Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci, 1978,818:499-502.
[2] Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F . Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019,365:658-664.
[3] 申卓, 桑立君, 刘丽丽, 徐涛 . 紧凑型玉米的增产机制与选育. 种子科技, 2007, ( 3):31-33.
Shen Z, Sang L J, Liu L L, Xu T . Yield increasing mechanism and selection of compact maize. Seed Sci & Technol, 2007, ( 3):31-33 (in Chinese).
[4] Li Y, Ma X, Wang T, Li Y X, Liu C, Liu Z, Sun B, Shi Y, Song Y, Carlone M, Buberk D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S, Niebur W, Smith S . Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci, 2011,51:2391-2400.
[5] Ku L X, Zhang J, Guo S L, Liu H Y, Zhao R F, Chen Y H . Integrated multiple population analysis of leaf architecture traits in maize ( Zea mays L.). J Exp Bot, 2012,63:261-274.
[6] Zhao X, Fang P, Zhang J, Peng Y . QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize ( Zea mays L.). Plant Breed, 2018,137:60-72.
[7] 路明, 周芳, 谢传晓, 李明顺, 徐云碧, Warburton M, 张世煌 . 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传, 2007,29:1131-1138.
Lu M, Zhou F, Xie C X, Li M S, Xu Y B, Warburton M, Zhang S H . Construction of an SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas ( Beijing), 2007,29:1131-1138 (in Chinese with English abstract).
[8] 孙海艳, 蔡一林, 王久光, 王国强, 徐德林, 徐延军 . 玉米株型性状的QTL定位. 西南大学学报(自然科学版), 2010,32(12):14-18.
Sun H Y, Cai Y L, Wang J G, Wang G Q, Xu D L, Xu Y J . QTL Mapping for plant-tape traits in maize. J Southwest Univ( Nat Sci Edn), 2010,32(12):14-18 (in Chinese with English abstract).
[9] Ku L X, Zhao W M, Zhang J, Wu L C, Wang C L, Wang P A, Zhang W Q, Chen Y H . Quantitative trait loci mapping of leaf angle and leaf orientation value in maize ( Zea mays L.). Theor Appl Genet, 2010,121:951-959.
[10] 刘鹏飞, 蒋锋, 王汉宁, 王晓明 . 玉米叶夹角和叶向值的QTL 定位. 核农学报, 2012,26:231-237.
Liu P F, Jiang F, Wang H N, Wang X M . QTL mapping for leaf angle and leaf orientation in corn. J Nucl Agric Sci, 2012,26:231-237 (in Chinese with English abstract).
[11] 张姿丽, 刘鹏飞, 蒋锋, 陈青春, 张媛, 王晓明, 王汉宁 . 基于四交群体的玉米叶夹角和叶向值QTL定位分析. 中国农业大学学报, 2014,19(4):7-16.
Zhang Z L, Liu P F, Jiang F, Chen Q C, Zhang Y, Wang X M, Wang H N . QTL mapping for leaf angle and leaf orientation in maize using a four-way cross population. J China Agric Univ, 2014,19(4):7-16 (in Chinese with English abstract).
[12] Zhang J, Ku L X, Han Z P, Guo S L, Liu H J, Zhang Z Z, Cao L R, Cui X J, Chen Y H . The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize( Zea mays L.). J Exp Bot, 2014,65:5063-5076.
[13] Ren Z, Wu L, Ku L, Wang H, Zeng H, Su H, Wei L, Dou D, Liu H, Cao Y, Zhang D, Han S, Chen Y . ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnol J, 2019: DOI: https://doi.org/10.1111/pbi.13255
[14] Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler E S, Zhang Z, Wang T, Li Y . Genetic control of the leaf angle and leaf orientation value as revealed by Ultra-High density maps in three connected maize populations. PLoS One, 2015,10:e0121624.
[15] 王会涛, 柳华峰, 郑耀刚, 赵帅帅, 刘浩浩, 库丽霞, 陈彦惠 . 玉米叶型相关性状QTL 定位及上位性效应分析. 分子植物育种, 2018,16 : 4955-4963.
Wang H T, Liu H F, Zheng Y G, Zhao S S, Liu H H, Ku L X, Chen Y H . QTL location and epistatic effect analysis of related traits of leaf type in maize. Mol Plant Breed, 2018,16:4955-4963 (in Chinese with English abstract).
[16] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S . Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011,43:159-162.
[17] 孙娇, 赵美爱, 潘顺祥, 裴玉贺, 郭新梅, 宋希云 . 玉米叶夹角的全基因组关联分析. 华北农学报, 2018,33(1):60-64.
Sun J, Zhao M A, Pan S X, Pei Y H, Guo X M, Song X Y . Correlation analysis of maize leaf angle with genome-wide association analysis. Acta Agric Boreali-Sin, 2018,33(1):60-64 (in Chinese with English abstract).
[18] Lu S, Zhang M, Zhang Z, Wang Z, Wu N, Song Y, Wang P . Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One, 2018,13:e0208386.
[19] Li Y, Shi Y S, Cao Y S, Wang T Y . Establishment of a core collection for maize germplasm preserved in Chinese National GenBank using geographic distribution and characterization data. Genet Resour Crop Evol, 2004,51:845-852.
[20] Wu X, Li Y, Li X, Li C, Shi Y, Song Y, Zheng Z, Li Y, Wang T . Analysis of genetic differentiation and genomic variation to reveal potential regions of importance during maize improvement. BMC Plant Biol, 2015,15:256.
doi: 10.1186/s12870-015-0646-7
[21] Pepper G E, Pearce R B, Mock J J . Leaf orientation and yield of maize. Crop Sci, 1977,17:883-886.
[22] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C, . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007,81:559-575.
[23] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E . Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet, 2012,44:217-220.
[24] Yan J, Shah T, Warburton M L, Buckler E S, McMullen M D, Crouch J . Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009,4:e8451.
[25] Li M X, Yeung J M, Cherny S S, Sham P C . Evaluating the efective numbers of independent tests and significant P-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 2012,131:747-756.
[26] 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华 . 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018,51:821-834.
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H . Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018,51:821-834.
[27] Wang Y, Li H, Zhang L, Lyu W, Wang J . On the use of mathematically-derived traits in QTL Mapping. Mol Breeding, 2012,29:661-673.
[28] Schön C C, Dhillon B S, Utz H F, Melchinger A E . High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet, 2010,120:321-332.
[29] 于永涛, 张吉民, 石云素, 宋燕春, 王天宇, 黎裕 . 利用不同群体对玉米株高和叶片夹角的QTL分析. 玉米科学, 2006,14(2):88-92.
Yu Y, Zhang J, Shi Y, Song Y, Wang T, Li Y . QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci, 2006,14(2):88-92 (in Chinese with English abstract).
[30] 刘正, 余婷婷, 梅秀鹏, 陈淅宁, 王国强, 王久光, 刘朝显, 王旭, 蔡一林 . 玉米穗上叶夹角和叶间距的QTL定位. 农业生物技术学报, 2014,22:177-187.
Liu Z, Yu T T, Mei X P, Chen X N, Wang G Q, Wang J G, Liu C X, Wang X, Cai Y L . QTL mapping for leaf angle and leaf space above ear position in maize ( Zea mays L.). J Agric Biotech, 2014,22:177-187 (in Chinese with English abstract).
[31] Chen X, Xu D, Liu Z, Yu T, Mei X, Cai Y . Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize ( Zea mays L.). Euphytica, 2015,204:395-405.
[32] Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J, Wu J . Genomic dissection of leaf angle in maize ( Zea mays L.) using a four-way cross mapping population. PLoS One, 2015,10:e0141619.
doi: 10.1371/journal.pone.0141619
[33] 徐德林, 蔡一林, 吕学高, 代国丽, 王国强, 王久光, 孙海艳, 覃鸿妮 . 玉米株型性状的QTL定位. 玉米科学, 2009,17(6):27-31.
Xu D L, Cai Y L, Lyu X G, Dai G L, Wang G Q, Wang J G, Sun H Y, Tan H N . QTL mapping for plant-tape traits in maize. J Maize Sci, 2009,17(6):27-31 (in Chinese with English abstract).
[34] Mickelson S M, Stuber C S, Senior L, Kaeppler S M . Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize. Crop Sci, 2002,42:1902-1909.
[35] Bowman J L, Eshed Y, Baum S F . Establishment of polarity in angiosperm lateral organs. Trends Genet, 2002,18:134-141.
[36] 袁立敏 . 玉米叶枕发育及叶夹角形成关键调控基因的挖掘. 山东农业大学硕士学位论文,山东泰安, 2016.
Yuan L M . Mining Key Genes Involved in the Regulation of Ligular Region Development and Leaf Angle (LA) Formation in Maize. MA Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[37] Kong F, Zhang T, Liu J, Heng S, Shi Q, Zhang H, Wang Z, Ge L, Li P, Lu X, Li G . Regulation of leaf angle by auricle development in maize. Mol Plant, 2017,10:516-519.
[38] Depuydt S, Hardtke C S . Hormone signaling crosstalk in plant growth regulation. Curr Biol, 2011,21:365-373.
[39] Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrechta E . Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017,29:1622-1641.
[40] Ruan W, Guo M, Xu L, Wang X, Zhao H, Wang J, Yi K . An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell, 2018,30:853-870.
[41] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y . Functions of OsBZR1 and 14-3-3 proteins in Brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007,104:13839-13844.
[42] Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X . miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot, 2011,62:761-773.
[43] Je B I, Piao H L, Park S J, Park S H, Kim C M, Xuan Y H, Park S H, Huang J, Choi Y D, An G, Wong H L, Fujioka S, Kim M C, Shimamoto K, Han C . RAV-Like1 maintains Brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell, 2010,22:1777-1791.
[44] Wang L, Xu Y, Zhang C, Ma Q, Joo S H, Kim S K, Xu Z, Chong K . OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via Brassinosteroids signaling. PLoS One, 2008,3:e3521.
[45] 高磊, 石有珍, 任玉红, 范瑞文, 王爱荣 . CDKs(细胞周期依赖性蛋白激酶)调控细胞周期中的作用. 畜牧兽医杂志, 2010,29(2):41-42.
Gao L, Shi Y Z, Ren Y H, Fan R W, Wang A R . Function of CDKs at cell cycle regulation. J Anim Sci & Veter Med, 2010,29(2):41-42 (in Chinese with English abstract).
[46] Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X . Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell, 2015,34:220-228.
[47] Guan P, Ripoll J J, Wang R, Vuong L, Bailey-Steinitz L J, Ye D, Crawford N M . Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA, 2017,114:2419-2424.
[48] Bai F, Reinheimer R, Durantini D, Kellogg E A, Schmidt R J . TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 ( BAD1), is required for normal tassel branch angle formation in maize. Proc Natl Acad Sci USA, 2012,109:12225-12230.
[49] Doebley J, Stec A, Gustus C . Teosinte branched 1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics, 1995,141:333-346.
[50] Micheli F . Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci, 2001,6:414-419.
doi: 10.1016/S1360-1385(01)02045-3
[51] Brummell D A, Cin V D, Crisosto C H, Labavitch J M . Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot, 2004,55:2029-2039.
doi: 10.1093/jxb/erh227
[52] Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z . Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011,23:4334-4347.
doi: 10.1105/tpc.111.093419
[53] Wolf S, Greiner S . Growth control by cell wall pectins. Protoplasma, 2012,249(S2):169-175.
doi: 10.1007/s00709-011-0371-5
[54] Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez J P, Zinder M, Samach A, Eshed Y, Ori N . The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 2009,136:823-832.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!