Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1033-1051.doi: 10.3724/SP.J.1006.2020.94130

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA

Tian-Yuan QIN1,2,**,Chao SUN1,2,**,Zhen-Zhen BI1,2,Wen-Jun LIANG1,2,Peng-Cheng LI1,2,Jun-Lian ZHANG1,Jiang-Ping BAI1,2,*()   

  1. 1 Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China;
    2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2019-08-27 Accepted:2019-12-26 Online:2020-07-12 Published:2020-01-14
  • Contact: Jiang-Ping BAI E-mail:baijp@gsau.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31660432);National Natural Science Foundation of China(31460369);China Agricultural Research System (Potato)(CARS-09-P14);Gansu Agricultural Research System (Potato)(GARS-03-P1);“Light of the West” Talent Training Program of the Chinese Academy of Sciences(2014-01);Lanzhou Science and Technology Development Plan(2015-3-62);Gansu Provincial Department of Education(2019B-073);Gansu Science and Technology Fund(18JR3RA174);Gansu Provincial Key Laboratory of Aridland Crop Science, GAU(GSCS-2017-9);GAU Fund(GAU-XKJS-2018-085)

Abstract:

Weighted gene co-expression network analysis (WGCNA) is a research method in systematic biology. It is widely used to identify gene modules related to target traits in multi-sample transcriptome data. In order to further explore the molecular mechanism of potato response to drought stress, two cultivars (C16: CIP 397077.16 and C119: CIP 398098.119) introduced from the International Potato Center were used as experimental materials, and five drought stress gradients were treated for 0 h, 2 h, 6 h, 12 h, and 24 h, with the untreated material as a control. A total of 30 samples of root system were used for transcriptome sequencing, with three biological replicates. Based on the above transcriptome data, we constructed a co-expression network of weighted genes associated with stress-resistant physiological traits by WGCNA, and obtained 15 gene co-expression modules closely related to root drought resistance. In addition, a number of hub genes involved in drought stress regulation pathways were discovered from the four modules with the highest correlation with target traits. These results provide clues for further study on the molecular genetic mechanisms of potato root drought resistance.

Key words: potato, drought stress, weighted gene co-expression network, transcriptome

Table 1

Experimental materials"

品种
Variety
CIP编号
CIP number
母本
Maternal parent
父本
Paternal parent
C16 CIP397077.16 392025.7=(LR93.221) 392820.1=(C93.154)
C119 CIP398098.119 393371.58 392639.31

Fig. 1

Upregulated and down-regulated genes in roots of C16 and C119 under different treatments A, B: the number of differentially expressed genes up-regulated in C16 and C 119 roots; C, D: the down-regulated genes. The yellow column represents the total number of genes in the sample, the black column represents the number of differentially expressed genes in the sample corresponding to the black dots, and the black line between the black dots represents the same differentially expressed genes between the samples."

Supplementary table 1

Biochemical indicator data for C16 and C119 at different treatment times"

处理时间Treatment time 超氧化物歧化酶
Superoxide dismutase (U g-1)
过氧化物酶
Peroxidase (U g-1 min-1)
过氧化氢酶
Catalase (U g-1 min-1)
根活力
Root vitality (mg g-1 h-1)
平均值
Average value
标准差
Standard
deviation
平均值
Average value
标准差
Standard
deviation
平均值
Average value
标准差
Standard
deviation
平均值
Average value
标准差
Standard
deviation
C16-0 h 9.57 2.00 2637.50 135.95 116.75 6.72 457.74 35.21
C16-2 h 14.13 1.55 3375.00 187.90 129.93 7.68 457.75 30.18
C16-6 h 15.63 1.81 3862.50 162.71 144.84 13.26 496.57 33.10
C16-12 h 16.42 1.75 4262.50 149.01 155.83 15.39 627.09 30.73
C16-24 h 22.22 1.35 8575.00 142.27 209.34 20.20 815.49 62.11
C119-0 h 46.02 5.15 1312.50 190.92 244.25 15.10 712.44 36.99
C119-2 h 48.92 6.91 3200.00 262.15 274.48 22.32 811.53 64.44
C119-6 h 49.16 6.29 3500.00 218.72 276.74 14.75 826.29 81.45
C119-12 h 56.62 7.72 3687.50 206.59 341.57 16.84 901.41 23.47
C119-24 h 75.53 8.95 6112.50 210.12 370.75 19.51 924.88 70.89

Fig. 2

Dendrogram of samples A: dendrogram of all 30 samples; B: dendrogram of samples after removing outlier."

Fig. 3

Soft threshold determination of gene co-expression network The abscissae in both Figures A and B represent the soft threshold, the ordinate of Figure A represents the scale-free network model index, the ordinate of Figure B represents the average degree of network connectivity for each soft threshold."

Fig. 4

Gene co-expression network gene clustering number and modular cutting Each branch of the gene clustering tree corresponds to one module."

Fig. 5

Association analysis of gene co-expression network modules with physiological and biochemical traits The horizontal axis represents different characteristics, and the vertical axis represents the eigenvectors of each module. The red lattice represents a positive correlation between the physiological traits with the module, while the green lattice represents a negative correlation. 0 h means no drought treatment, as the control."

Fig. 6

ME cluster tree"

Fig. 7

ME correlation between different modules"

Fig. 8

Expression levels of all genes and corresponding ME in different modules of each sample The above figure (heat map) shows the expression level of all genes in modules. A: Red module; B: Yellow module; C: Turquoise module; D: Blue module. The row represents all genes in the module, and the column represents each sample. The below figure shows the ME expression level of the module in the sample."

Fig. 9

Gene GO annotation in target module"

Table 2

Partial GO enrichment analysis of target modules"

模块
Module
GO条目
GO term
基因本体
Ontology
描述
Description
P
P-value
Red GO:0016705 F 氧化还原酶活性, 作用于成对供体, 与分子氧结合或还原。
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen.
2.90E-09
Red GO:0004866 F 内肽酶抑制剂活性。
Endopeptidase inhibitor activity.
0.00062
Red GO:0030414 F 肽酶抑制剂活性。
Peptidase inhibitor activity.
0.00062
Red GO:0005515 F 蛋白质结合。
Protein binding.
0.0012
Yellow GO:0005515 F 蛋白质结合。
Protein binding.
2.20E-13
Turquoise GO:0015979 P 光合作用。
Photosynthesis.
7.10E-07
模块
Module
GO条目
GO term
基因本体
Ontology
描述
Description
P
P-value
Turquoise GO:0019684 P 光合作用, 光反应。
Photosynthesis, light reaction.
5.90E-06
Turquoise GO:0006694 P 类固醇生物合成过程。
Steroid biosynthetic process.
5.60E-05
Turquoise GO:0010033 P 对有机物质的反应。
Response to organic substance.
0.00023
Turquoise GO:0005515 F 蛋白结合。
Protein binding.
4.00E-27
Turquoise GO:0016705 F 氧化还原酶活性, 作用于成对供体, 与分子氧结合或还原。
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen.
3.00E-07
Turquoise GO:0003854 F 3-β-羟基-Δ5-类固醇脱氢酶活性。
3-beta-hydroxy-delta5-steroid dehydrogenase activity.
3.30E-05
Turquoise GO:0033764 F 类固醇脱氢酶活性, 作用于供体的羟基, NAD或NADP作为受体。
Steroid dehydrogenase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor.
3.30E-05
Turquoise GO:0016229 F 类固醇脱氢酶活性。
Steroid dehydrogenase activity.
3.30E-05
Turquoise GO:0016614 F 氧化还原酶活性, 作用于供体的羟基。
Ooxidoreductase activity, acting on CH-OH group of donors.
7.10E-05
Turquoise GO:0016616 F 氧化还原酶活性, 作用于供体的羟基, NAD或NADP作为受体。
Oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor.
0.00026
Turquoise GO:0051287 F NAD或NADH结合。
NAD or NADH binding.
0.00039
Turquoise GO:0008092 F 细胞骨架蛋白结合。
Cytoskeletal protein binding.
0.00062
Blue GO:0007010 P 细胞骨架组织。
Cytoskeleton organization.
1.20E-05
Blue GO:0005515 F 蛋白结合。
Protein binding.
2.70E-29
Blue GO:0016705 F 氧化还原酶活性, 作用于成对供体, 与分子氧结合或还原。
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen.
2.50E-10
Blue GO:0016021 C 膜结合。
Integral to membrane.
7.30E-05
Blue GO:0015629 C 肌动蛋白细胞骨架。
Actin cytoskeleton.
0.00021
Blue GO:0031224 C 膜固有的。
Intrinsic to membrane.
0.00036

Fig. 10

Gene co-expression network and hub genes in Red and Yellow modules"

Fig. 11

Gene co-expression network and hub genes in Turquoise and Blue modules"

Table 3

Functional annotations of hub genes in different modules"

模块
Module
核心基因
Hub gene
核心基因在
拟南芥同源基因
Hub gene in A. thaliana
基因功能
Gene function
Red PGSC0003DMG400030368 AT1G07140 编码假定的RAN结合蛋白。
Encodes a putative RAN-binding protein (siRANBP).
Red PGSC0003DMG400003662 AT1G20270; AT5G66060 2-氧戊二酸和铁依赖性加氧酶超家族蛋白; 铁离子结合/氧化还原酶/氧化还原酶蛋白。
2-oxoglutarate and Fe-dependent oxygenase superfamily protein; Ironion binding/oxidoreductase/oxidoreductase protein.
Red PGSC0003DMG402020462 AT5G25360 假设性蛋白质。
Hypothetical protein (source: Araport 11).
Red PGSC0003DMG400005154 X 未知功能。Unknown.
Red PGSC0003DMG400020562 AT2G40470 含LOB结构域的蛋白质。参与木质部分化的调节——作为VND7的调节器, VND7是木质部细胞分化的主要调节器。
LOB-domain containing protein. Involved in regulation of xylem differentiation—acts as a regulator of VND7 which is a master regulator of xylem cell differentiation.
Yellow PGSC0003DMG400029350 AT1G05680[15] 编码一个UDP-葡萄糖基转移酶, ugt74e2, 作用于IBA (吲哚-3-丁酸)并影响生长素的稳态。这种酶的转录和蛋白质水平被H2O2强烈诱导, 可能允许ROS (活性氧物种)和生长素信号的整合。
Encodes a UDP-glucosyltransferase, ugt74e2, that acts on IBA (indole-3-butyric acid) and affects auxin homeostasis. The transcript and protein levels of this enzyme are strongly induced by H2O2 and mayallow integration of ROS (reactive oxygen species) and auxin signaling.
Yellow PGSC0003DMG400024717 AT3G05545 超家族蛋白。
RING/U-box superfamily protein (source: Araport 11).
Yellow PGSC0003DMG400026572 AT3G51730[16] 含皂苷B结构域的蛋白质。
Saposin B domain-containing protein (source: Araport 11).
Yellow PGSC0003DMG400006704 AT5G35200[17] 超家族蛋白。
ENTH/ANTH/VHS superfamily protein (source: Araport 11).
Yellow PGSC0003DMG400015386 AT2G42610 光依赖性短下胚轴样蛋白。
LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640) (source: Araport 11).
Yellow PGSC0003DMG400026238 AT3G60410 假设性蛋白质。
Hypothetical protein (DUF1639) (source: Araport 11).
模块
Module
核心基因
Hub gene
核心基因在
拟南芥同源基因
Hub gene in A. thaliana
基因功能
Gene function
Yellow PGSC0003DMG400020683 AT3G25910 MAP激酶
Mitogen-activated protein kinases (DUF1644)(source: Araport 11).
Yellow PGSC0003DMG400024687 AT1G55000[18] 含蛋白的肽聚糖结合赖氨酸域。
Peptidoglycan-binding LysM domain-containing protein (source: Araport 11).
Yellow PGSC0003DMG400006516 AT1G55570 SKU5 similar 12 (source: Araport 11).
Turquoise PGSC0003DMG400013391 AT3G22990 含有蛋白质的犰狳重复序列, 位于核内, 广泛表达于植物。
Armadillo-repeat containing protein, located in nucleus, broadly expressed throughout vegetative.
Turquoise PGSC0003DMG400003792 AT3G14110[19] 编码一种新的盘绕线圈, 含有TPR结构域的蛋白质, 定位于叶绿体膜并参与叶绿素的生物合成。
Encodes a novel coiled-coil, TPR domain containing protein that is localized to the chloroplast membrane and is involved in chlorophyll biosynthesis.
Turquoise PGSC0003DMG400024698 AT5G27620 核心细胞周期基因的mRNA是细胞间流动的。
Core cell cycle genes the mRNA is cell-to-cell mobile.
Turquoise PGSC0003DMG402011550 AT5G23200 C5orf35 (source: Araport 11).
Blue PGSC0003DMG400018372 X 未知功能。Unknown.
Blue PGSC0003DMG400026187 AT3G50950 编码一种典型的CC型NLR蛋白, 该蛋白是识别病原菌丁香中T3SE-Hopz1a所必需的。
Encodes a canonical CC-type NLR protein that is required for the recognition of the T3SE HopZ1a from the pathogenic bacteria P. syringae

Table 4

Correspondence between letters and genes"

字母
Letter
基因
Gene
字母
Letter
基因
Gene
字母
Letter
基因
Gene
A PGSC0003DMG400026572 E PGSC0003DMG400030368 I PGSC0003DMG400006704
B PGSC0003DMG400005154 F PGSC0003DMG400003792 J PGSC0003DMG400020683
C PGSC0003DMG400029350 G PGSC0003DMG402011550 K PGSC0003DMG400024687
D PGSC0003DMG400020462 H PGSC0003DMG400013391 L PGSC0003DMG400026238

Fig. 12

RT-qPCR validation of Hub genes"

[1] 赵鸿, 任丽雯, 赵福年, 齐月, 蔡迪花, 王春玲, 陈斐, 雷俊, 王润元, 王鹤龄, 张凯, 姚玉璧, 王兴. 马铃薯对土壤水分胁迫响应的研究进展. 干旱气象, 2018,36:537-543.
Zhao H, Ren L W, Zhao F N, Qi Y, Cai D H, Wang C L, Chen F, Lei J, Wang R Y, Wang H L, Zhang K, Yao Y B, Wang X. Potato response to soil water stress research progress. Drought Meteorol, 2018,36:537-543 (in Chinese with English abstract).
[2] 李海珀. 铃薯抗旱性研究进展. 种子科技, 2018,36(3):118-120.
Li H P. Advances in drought resistance of potatoes. Seed Sci Technol, 2018,36(3):118-120 (in Chinese with English abstract).
[3] 秦天元, 孙超, 毕真真, 王瀚, 李鑫, 曾文婕, 白江平. 物根系成像技术研究进展及马铃薯根系研究应用前景. 核农学报, 2019,33:412-419.
Qin T Y, Sun C, Bi Z Z, Wang H, Li X, Zeng W J, Bai J P. The research progress of plant root imaging technology and the application prospect of potato root research. J Nucl Agric, 2019,33:412-419 (in Chinese with English abstract).
[4] Clark L J, Whalley W R, Barraclough P B. How do roots penetrate strong soil. Plant Soil, 2003,255:93-104.
doi: 10.1023/A:1026140122848
[5] Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lyu L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705
[6] Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 28826479
[7] Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
pmid: 24828307
[8] 杨宇昕, 桑志勤, 许诚, 代文双, 邹枨. 用WGCNA进行玉米花期基因共表达模块鉴定. 作物学报, 2019,45:161-174.
Yang Y X, Sang Z Q, Xu C, Dai W S, Zou C. Identification of co-expression module of maize florescence genes using WGCNA. Acta Agron Sin, 2019,45:161-174 (in Chinese with English abstract).
[9] Miller G, Suzuki N, Ciftci Y S. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 2010,33:453-467.
doi: 10.1111/j.1365-3040.2009.02041.x pmid: 19712065
[10] Wrzaczek M, Brosché M, Kangasjärvi J. ROS signaling loops-production, perception, regulation. Curr Opin Plant Biol, 2013,16:575-582.
doi: 10.1016/j.pbi.2013.07.002 pmid: 23876676
[11] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling. J Exp Bot, 2014,65:1229-1240.
doi: 10.1093/jxb/ert375 pmid: 24253197
[12] Zhou D, Xin Z, Yi L, Zhen H Z, Zhen S. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2010,38:64-70.
[13] Tian T, Yue L, Heng Y Y, Qi Y, Xin Y, Zhou D, Wen Y X, Zhen S. AgriGO v 2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 2017,45:122-129.
[14] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
pmid: 14597658
[15] Tognetti T A, Kris M, Korneel V, Brigitte C, Inge D C, Sheila C, Ricarda F, Els P, Wout B, Bernard G, Dirk S K A, Frank V B. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell, 2010,22:2660-2679.
doi: 10.1105/tpc.109.071316 pmid: 20798329
[16] Clay C, Song Q P, Jan Z, Thomas G. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell, 2004,16:3285-3303.
pmid: 15539469
[17] Benschop J J, Mohammed S, O’Flaherty M, Heck A J, Slijper M, Menke F L. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics, 2007,6:1198-1214.
doi: 10.1074/mcp.M600429-MCP200 pmid: 17317660
[18] Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA, 2002,99:11519-11524.
pmid: 12169662
[19] Laloi C, Przybyla D, Apel K. A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana, J Exp Bot, 2006,57:1719-1724.
pmid: 16720605
[20] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010,327:833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[21] 纪瑞鹏, 于文颖, 冯锐, 武晋雯, 张玉书, 王茜. 作物对干旱胁迫的响应过程与早期识别技术研究进展. 灾害学, 2019,34(2):153-160.
Ji R P, Yu W Y, Feng R, Wu J W, Zhang Y S, Wang Q. Advances in crop response to drought stress and early identification techniques. Disaster Sci, 2019,34(2):153-160 (in Chinese with English abstract).
[22] Yuan Q Z, Wu S H, Dai E F, Zhao D S, Ren P, Zhang X R. NPP vulnerability of the potential vegetation of China to climate change in the past and future. J Geogr Sci, 2017,27:131-142.
[23] Huang L, Li W C, Tam N F Y, Ye Z H. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci, 2019,75:296-306.
[24] 郭宾会, 戴毅, 宋丽. 干旱下植物激素影响作物根系发育的研究进展. 生物技术通报, 2018,34(7):48-56.
Guo B H, Dai Y, Song L. Advances in plant hormones affecting root development under drought. Biotechnol Bull, 2018,34(7):48-56 (in Chinese with English abstract).
[25] 朱维琴, 吴良欢, 陶勤南. 作物根系对干旱胁迫逆境的适应性研究进展. 土壤与环境, 2002,11:430-433.
Zhu W Q, Wu L H, Tao Q N. Advances in research on the adaptability of crop roots to drought stress. Soil Environ, 2002,11:430-433 (in Chinese with English abstract).
[26] Xu Z P, Miao Y X, Chen Z A, Gao H L, Wang R X, Zhao D S, Zhang B C, Zhou Y H, Tang S Z, Zhang H G, Liu Q Q. Identification and fine mapping of qGN1c, a QTL for grain number per panicle, in rice (Oryza sativa L.). Mol Breed, 2019,39:1-12.
doi: 10.1007/s11032-018-0907-x
[27] 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育. 作物杂志, 2018, (6):10-16.
Wang W W, Wang H Y, Liu J, Liang J S, Li C H, Tang W. Mapping of important traits of potato and molecular marker assisted selection of three disease resistant traits. Crops, 2018, (6):10-16 (in Chinese with English abstract).
[28] Guo Y, Xing Y. Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene. Life Sci, 2016,151:339-347.
doi: 10.1016/j.lfs.2016.02.074 pmid: 26916823
[29] Tao W, Xing W H, Xin T L, Yu J L, Wen J Z, Qiang H, Wan J L, Lu Y X, Rong T, Hong J W, He S Z. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kB dependent pathway. Front Physiol, 2017,8:1-17.
doi: 10.3389/fphys.2017.00001 pmid: 28154536
[30] Hai T Z, Xin X D, Kai Z, Yue Z L, Yu J W, Jin X L, Yan H, Xu B W, Quan Q Z. Weighted correlation network analysis (WGCNA) of Japanese flounder (Paralichthys olivaceus) embryo transcriptome provides crucial gene sets for understanding haploid syndrome and rescue by diploidization. J Ocean Univ China, 2018,17:1441-1450.
doi: 10.1007/s11802-018-3656-x
[31] Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharmaceutical Statistics, 2010,20:281-300.
[32] Jaspers P, Kangasjrvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant, 2010,138:405-413.
pmid: 20028478
[33] 尹智宇, 郭华春, 封永生, 肖关丽. 干旱胁迫下马铃薯生理研究进展. 中国马铃薯, 2017,31:234-239.
Yin Z Y, Guo H C, Feng Y S, Xiao G L. Advances in potato physiology under drought stress. Chin Potato, 2017,31:234-239 (in Chinese with English abstract).
[34] 崔慧妮, 屠培培, 李晓丽, 李燕燕, 田凤龙, 张宪省, 孙庆泉. 农杆菌介导的ZmHSD1基因转入玉米自交系. 山东农业科学, 2013,45(7):6-8.
Cui H N, Tu P P, Li X L, Li Y Y, Tian F L, Zhang X S, Sun Q Q. Agrobacterium-mediated transformation of ZmHSD1 gene into maize inbred lines. Shandong Agric Sci, 2013,45(7):6-8 (in Chinese with English abstract).
[35] 孙超, 黎家. 油菜素甾醇类激素的生物合成、信号转导和代谢. 植物生理学报, 2017,53:291-307.
Sun C, Li J. Biosynthesis, signal transduction and metabolism of brassinosteroids. J Plant Physiol, 2017,53:291-307 (in Chinese with English abstract).
[36] Tognetti V B, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs K A, Inzé D, van Breusegem F. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell, 2010,22:2660-2679.
doi: 10.1105/tpc.109.071316 pmid: 20798329
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[4] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[7] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[8] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[9] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[10] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[11] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[12] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[13] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!