Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (1): 116-124.doi: 10.3724/SP.J.1006.2021.04087

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of calcium application on the structural diversity of endophytic bacterial community in peanut roots under acidic red soil cultivation

ZHANG Wei1(), HONG Yan-Yun1, LIU Deng-Wang2, ZHANG Bo-Wen2, YI Tu-Yong1,*(), LI Lin2,*()   

  1. 1College of Plant Protection, Hunan Agricultural University / Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Changsha 410128, Hunan, China
    2Institute of Dryland Crops of Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2020-04-02 Accepted:2020-09-13 Online:2021-01-12 Published:2020-09-22
  • Contact: YI Tu-Yong,LI Lin E-mail:349187910@qq.com;yituyong@hunau.net;lilindw@163.com
  • Supported by:
    National Research and Development Program of China(2018YFD1000900)

Abstract:

Peanut is an important economic crop and calcium-loving crop in China. In order to explore the effect of calcium application on the diversity of endophytic bacteria in peanut roots planted in acid red soil, the genomes of endophytic bacteria in peanut roots of different treatments and different growth stages were deeply sequenced by 16SrRNA gene V3-V4 region, and the root microbial community structure of peanut plants planted in acid red soil and control was analyzed. The results showed that Klebsiella and Enterobacter were the dominant genera with high relative abundance in the endophytic bacterial community from all sample groups. The relative abundance of Pseudomonas and Lysinibacillus were significantly higher than that from the control group, while the relative abundance of Ralstonia decreased significantly in the calcium application groups during the pod-pin stage at P ≤ 0.05. The interaction network analysis showed that the connection of root endophytic bacterial in calcium application group was relatively close. We reasonably inferred that the composition of peanut root endophytic bacterial community was affected by calcium application and plant growing development. Calcium application could change the community structure and improve the ability of peanut to cope with external stress. This study may lay a foundation for improving the quality of acid soil and improving the disease resistance of peanut by applying calcium in the future.

Key words: peanut, calcium, acid red soil, endophytic bacteria, microbial diversity

Table 1

Group number of 16S amplicon sequencing sample"

生育期
Stage
不施钙组送样编号
Sample groups without calcium application
施钙组送样编号
Sample groups with calcium application
苗期 Seeding stage B.R.1, B.R.2, B.R.3 BC.R.1, BC.R.2, BC.R.3
花针期 Acicula forming stage F.R.1, F.R.2, F.R.3 FC.R.1, FC.R.2, FC.R.3
饱果期 Pod maturing stage P.R.1, P.R.2, P.R.3 PC.R.1, PC.R.2, PC.R.3

Fig. 1

PCR electrophoresis detection of 16S V3-V4 from endophytic bacteria genome Sample groups are the same as those given in Table 1."

Fig. 2

Venn analysis and UPGMA clustering A: Venn diagram of OTUs from the root endophytes in different sample groups; B: UPGMA clustering tree of the root endophytes in different sample groups. Sample groups are the same as those given in Table 1."

Fig. 3

Histogram of the Top 20 genera relative abundance from different sample groups Sample groups are the same as those given in Table 1."

Table 2

Percentage of the Top 10 relative abundance under different growth stage and different treatments at the genus level"

处理
Treatment
样品编号
Sample group
优势菌属
Dominant genus
相对丰度百分比PRA (%) 处理
Treatment
样品编号
Sample group
优势菌属
Dominant genus
相对丰度百分比PRA(%)
苗期不施钙
Seeding stage without calcium
B.R. Acinetobacter 16.9 苗期施钙 Seeding stage with calcium
BC.R. Klebsiella 30.1
Klebsiella 16.8 Bacillus 26.3
Enterobacter 7.5 Enterobacter 6.1
Anoxybacillus 5.0 Enhydrobacter 5.1
Herbaspirillum 4.9 Bradyrhizobium 1.8
花针期不施钙
Acicula forming stage without calcium
F.R. Klebsiella 16.9 花针期施钙
Acicula forming stage with calcium
FC.R. Klebsiella 37.2
Enterobacter 8.9 Stenotrophomonas 13.1
Acinetobacter 6.7 Pseudomonas 8.7
Pantoea 5.0 Comamonas 8.3
Dyella 3.7 Enterobacter 7.4
饱果期不施钙
Pod maturing stage without calcium
P.R. Klebsiella 33.4 饱果期施钙
Pod maturing stage with calcium
PC.R. Klebsiella 30.9
Enterobacter 11.3 Pseudomonas 8.9
Paenibacillus 6.3 Paenibacillus 8.7
Pseudomonas 4.9 Lysinibacillus 8.3
Bacillus 1.7 Bacillus 3.2

Fig. 4

Genera with significant differences in relative abundance at acicula forming stage"

Fig. 5

LEfSe analysis cladogram of endophytic bacteria from different sample groups Sample groups are the same as those given in Table 1."

Fig. 6

Interaction network of endophytic bacteria under different treatments A: interaction network of endophytic bacteria with calcium application; B: interaction network of endophytic bacteria without calcium application."

[1] Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019,51:865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[2] 刘鹏, 田颖哲, 钟永嘉, 廖红. 酸性土壤上花生高效根瘤菌的分离及应用. 中国农业科学, 2019,52:3393-3403.
Liu P, Tian Y Z, Zhong Y J, Liao H. Isolation and application of effective Rhizobium strains in peanut on acidic soils. Sci Agric Sin, 2019,52:3393-3403 (in Chinese with English abstract).
[3] Li Y, Meng J, Yang S, Guo F, Zhang J, Geng Y, Cui L, Wan S, Li X. Transcriptome analysis of calcium- and hormone-related gene expressions during different stages of peanut pod development. Front Plant Sci, 2017,8:1241.
pmid: 28769950
[4] 王飞, 王建国, 李林, 刘登望, 万书波, 张昊. 施钙与覆膜栽培对缺钙红壤花生Mg、Fe、Zn吸收、积累及分配的影响. 核农学报, 2019,33:2261-2270.
Wang F, Wang J G, Li L, Liu D W, Wan S B, Zhang H. Effects of calcium application and film mulching on the absorption, accumulation and distribution of Mg, Fe, Zn, in calcium-deficient red soil peanuts. J Nuclear Agric Sci, 2019,33:2261-2270 (in Chinese with English abstract).
[5] 张佳蕾, 郭峰, 孟静静, 杨莎, 耿耘, 杨佃卿, 李元高, 张文生, 李新国, 万书波. 钙肥对旱地花生生育后期生理特性和产量的影响. 中国油料作物学报, 2016,38:321-327.
Zhang J L, Guo F, Meng J J, Yang S, Geng Y, Yang D Q, Li Y G, Zhang W S, Li X G, Wan S B. Effects of calcium fertilizer on physiological characteristics at late growth stage and pod yield of peanut on dryland. Chin J Oil Crop Sci, 2016,38:321-327 (in Chinese with English abstract).
[6] 李东霞, 符海泉, 杨伟波, 徐中亮. 不同钙处理对2份海南花生种质资源农艺性状和防御酶系统的影响. 江苏农业科学, 2019,47(10):117-121.
Li D X, Fu H Q, Yang W B, Xu Z L. Effects of different calcium treatments on agronomic characters and defense enzyme system of 2 peanut germplasm resources from Hainan. Jiangsu Agric Sci, 2019,47(10):117-121 (in Chinese with English abstract).
[7] Jiang J, Li J, Dong Y. Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. Eur J Plant Pathol, 2013,136:547-555.
[8] Hosseini S A, Rethore E, Pluchon S, Ali N, Billiot B, Yvin J C. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int J Mol Sci, 2019,20:3777.
[9] Moeder W, Phan V, Yoshioka K. Ca2+ to the rescue-Ca2+ channels and signaling in plant immunity. Plant Sci, 2019,279:19-26.
doi: 10.1016/j.plantsci.2018.04.012 pmid: 30709488
[10] Zipfel C, Oldroyd G E. Plant signalling in symbiosis and imm- unity. Nature, 2017,543:328-336.
doi: 10.1038/nature22009 pmid: 28300100
[11] 王芳, 李振轮, 陈艳丽, 杨水英, 徐义. 钙抑制植物病害作用及机制的研究进展. 生物技术通报, 2017,33(2):1-7.
Wang F, Li Z L, Chen Y L, Yang S Y, Xu Y. Recent advances on inhibition mechanisms of calcium on plant diseases. Biotechnol Bull, 2017,33(2):1-7 (in Chinese with English abstract).
[12] 姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展. 生物技术通报, 2019,35(10):189-197.
Jiang H H, Wang T, Chen N, Yu S L, Chi X Y, Wang M, Qi P S. Research progress in PGPR improving plant’s resistance to salt and alkali. Biotechnol Bull, 2019,35(10):189-197 (in Chinese with English abstract).
[13] 吴晓青, 周方园, 张新建. 微生物组学对植物病害微生物防治研究的启示. 微生物学报, 2017,57:867-875.
doi: 10.13343/j.cnki.wsxb.20170073
Wu X Q, Zhou F Y, Zhang X J. The enlightenment of microbiome to plant disease control. Acta Microbiol Sin, 2017,57:867-875 (in Chinese with English abstract).
[14] Berendsen R L, Vismans G, Yu K, Song Y, de Jonge R, Burgman W P, Burmolle M, Herschend J, Bakker P, Pieterse C. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J, 2018,12:1496-1507.
doi: 10.1038/s41396-018-0093-1 pmid: 29520025
[15] 韩丽珍, 刘畅, 周静. 接种促生菌对花生根际土壤微生物及营养元素的影响. 基因组学与应用生物学, 2019,38:3065-3073.
Han L Z, Liu C, Zhou J. Effects of inoculation with growth-promoting bacteria on peanut rhizosphere soil microorganism and nutrient elements. Genomics Appl Biol, 2019,38:3065-3073 (in Chinese with English abstract).
[16] Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, Huang Q, Bai Y, Vivanco J M, Kowalchuk G A, Berendsen R L, Shen Q. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018,6:156.
doi: 10.1186/s40168-018-0537-x pmid: 30208962
[17] Molina-Romero D, Baez A, Quintero-Hernandez V, Castaneda-Lucio M, Fuentes-Ramirez L E, Bustillos-Cristales M, Rodriguez-Andrade O, Morales-Garcia Y E, Munive A, Munoz-Rojas J. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One, 2017,12:e187913.
[18] Ibáñez F, Angelini J, Taurian T, Tonelli M L, Fabra A. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol, 2009,32:49-55.
doi: 10.1016/j.syapm.2008.10.001 pmid: 19054642
[19] Sharma S, Chen C, Navathe S, Chand R, Pandey S P. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep, 2019,9:4054.
doi: 10.1038/s41598-019-40930-x pmid: 30858512
[20] Gong A, Dong F, Hu M, Kong X, Wei F, Gong S, Zhang Y, Zhang J, Wu A, Liao Y. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control, 2019,106:106718.
doi: 10.1016/j.foodcont.2019.106718
[21] Yang X, Zhang Q, Chen Z Y, Liu H, Li P. Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts. PLoS One, 2017,12:e178810.
[22] Wang M Q, Wang Z, Yu L N, Zhang C S, Bi J, Sun J. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol, 2019,201:673-678.
pmid: 30798341
[23] Wang K, Yan P S, Ding Q L, Wu Q X, Wang Z B, Peng J. Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol, 2013,29:1-10.
doi: 10.1007/s11274-012-1135-x pmid: 23108663
[24] Haggag W M, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol, 2008,104:961-969.
doi: 10.1111/j.1365-2672.2007.03611.x pmid: 18005030
[25] 魏兰芳, 周丽洪, 姬广海, 王永吉, 汪绍雪. Lysobacter antibioticus 13-1菌株抗菌物质鉴定及对水稻白叶枯病的防治效果. 微生物学通报, 2014,41:274-280.
Wei L F, Zhou L H, Ji G H, Wang Y J, Wang S X. Control of rice bacterial leaf blight by antibacterial substances from Lysobacter antibioticus strain 13-1. Microbiol China, 2014,41:274-280 (in Chinese with English abstract).
[26] 雒晓芳, 陈俊楠, 田丹妮, 汪如婷, 马麟龙, 莫芳芳. 白色类诺卡氏菌的分离鉴定及其抗菌活性初探. 中国酿造, 2015,34(10):58-61.
doi: 10.11882/j.issn.0254-5071.2015.10.013
Luo X F, Chen J L, Tian D N, Wang R T, Ma L L, Mo F F. Separation and identification of Nocardioides albus and preliminary research on its antibacterial activity. China Brew, 2015,34(10):58-61 (in Chinese with English abstract).
[27] 云天艳, 冯仁军, 陈宇丰, 周登博, 高祝芬, 起登凤, 张银东, 张锡炎. 木薯根际放线菌的分离鉴定及其抑菌活性分析. 江苏农业科学, 2016,44(4):166-171.
Yun T Y, Feng R J, Chen Y F, Zhou D B, Gao Z F, Qi D F, Zhang Y D, Zhang X Y. Isolation and identification of cassava rhizosphere actinomycetes and analysis of its antibacterial activity. Jiangsu Agric Sci, 2016,44(4):166-171 (in Chinese with English abstract).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[14] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[15] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!