Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 507-519.doi: 10.3724/SP.J.1006.2021.03024

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density

ZHU Ya-Li1, WANG Chen-Guang2, YANG Mei1, ZHENG Xue-Hui1, ZHAO Cheng-Feng1, ZHANG Ren-He1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Shaanxi Agronomy and Technology Extension Station, Xi’an 710003, Shaanxi, China
  • Received:2020-05-06 Accepted:2020-10-14 Online:2021-03-12 Published:2020-10-28
  • Contact: ZHANG Ren-He E-mail:zhangrenhe1975@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300304);Shaanxi Key Research and Development Program(2017ZDCXL-NY-02-02);Shaanxi Technology Innovation and Guide Project(2019TG-002)

Abstract:

Exploring the regulation effect of planting density on grain filling and dehydration characteristics of kernels located in different ear positions in different maturity maize hybrids could provide theoretical and technical reference for high yield production for the mechanized grain harvest of spring maize in northern Shaanxi irrigation area. A field experiment was conducted using the medium maturity maize hybrid Xianyu 335 and the late maturity maize hybrid Dongdan 60 with four plant densities of 45,000 (D1), 60,000 (D2), 75,000 (D3), and 90,000 (D4) plants hm-2 from 2018 to 2019. Their grain filling and dehydration characteristics at different grain positions and their correlation with climatic factors were analyzed. The results showed that increasing density could significantly increase the grain yield with different maturity maize hybrids with both hybrids reaching the highest yield under D4 treatment in 2018; Xianyu 335 and Dongdan 60 reached the highest yield under D4 and D3 treatments in 2019, respectively, and the 2-year average highest yields were 18,739 kg hm-2 and 17,111 kg hm-2, which were 32.2% and 27.7% higher than those under D1 treatment. With the increase of plant density the grain filling rate and the grain weight decreased, and the dehydration rate accelerated of different grain positions. Under D4 plant density, the average grain filling rate of the lower and upper grains of Xianyu 335 was 0.08 g d-1 and 0.04 g d-1 higher than that of Dongdan 60, and the grain weight was 3.6 g and 1.6 g higher than that of Dongdan 60, respectively. The correlation analysis showed that the grain moisture content of different grain positions was positively correlated with the effective accumulated temperature from silking to physiological maturity stage, but the total dehydration rate was not significantly correlated with grain filling rate. The grain dehydration rate of Xianyu 335 at different grain positions was high, and the average total dehydration rate of lower and upper grains was 0.006% °C d -1 and 0.005% °C d -1 higher than that of Dongdan 60. Furthermore, compared with the lower grains, the upper kernels had lower filling rate, longer filling period, smaller grain weight, faster dehydration at the later stage, and required less accumulated temperature to reach 28% and 25% moisture content. Based on our study, the upper kernels were more sensitive to higher plant density than lower kernels. Compared with Dongdan 60, the mid-mature maize hybrid Xianyu 335 has the higher grain filling rate, larger grain weight, and faster dehydration rate in the dense planting conditions. In conclusion, properly increased plant density coupled with middle-maturity maize hybrids is a potential way to increase the grain yield for mechanized grain harvest in the irrigation area of Northern Shaanxi.

Key words: spring maize, hybrid maturity, grain position, grain filling, dehydration characteristics, grain yield

Fig. 1

Temperature and daily rainfall changes during the growth period of maize in 2018 and 2019"

Table 1

Effects of plant density on yield and its components of maize hybrids with different maturity"

年份
Year
品种
Hybrids
密度
Density
实收穗数
Panicle number
(Ears hm-2)
穗粒数
Grains per ear
(spike hm-2)
百粒重
100-kernel weight
(g)
籽粒产量
Grain yield
(kg hm-2)
2018 东单60
Dongdan 60
D1 46,354±564 d 747±10.5 a 38.6±0.2 a 13,194±24 d
D2 60,101±5321 c 700±4.5 b 37.5±0.1 b 14,128±167 c
D3 68,182±5463 b 656±15.5 c 33.8±0.4 c 16,459±105 b
D4 82,323±875 a 611±8.5 d 32.8±0.9 d 16,853±166 a
先玉335
Xianyu 335
D1 46,465±875 d 748±11.3 a 42.5±1.6 a 14,179±142 d
D2 56,061±1515 c 696±18.2 b 41.0±1.5 b 15,500±188 c
D3 65,152±1515 b 656±9.6 c 39.6±0.9 c 18,010±88 b
D4 80,324±358 a 633±10.5 d 38.9±0.2 d 18,741±107 a
2019 东单60
Dongdan 60
D1 46,308±744 d 744±12.6 a 38.7±0.2 a 13,627±180 d
D2 60,771±1936 c 696±10.5 b 37.7±0.1 b 15,276±245 c
D3 68,421±1419 b 653±14.6 c 33.7±0.6 c 17,369±94 a
D4 81,774±355 a 611±18.3 d 33.0±0.6 d 16,976±135 b
先玉335
Xianyu 335
D1 46,108±801 d 742±12.9 a 42.5±0.3 a 14,599±128 c
D2 56,148±789 c 711±15.4 b 41.3±0.1 b 16,107±170 b
D3 65,127±1980 b 653±15.5 c 39.6±0.2 c 18,562±59 a
D4 80,165±999 a 624±8.4 d 38.6±0.2 d 18,737±81 a
变异来源
Source of variation
年份Year (Y) ns ns ns ns
品种Hybrid (H) ** ns ** **
密度Density (D) ** ** ** **
Y×H ns ns ns ns
Y×D ns ns ns ns
Y×D ** ** ** **
Y×H×D ns ns ns ns

Table 2

Regression relationship between yield components and planting density in different maturity hybrids"

项目
Item
品种
Hybrid
回归方程
Regression equation
决定系数
R2
穗粒数
Grains per spike
先玉335 Xianyu 335 y = -0.0027x + 861.9 0.987**
东单60 Dongdan 60 y = -0.0028x + 871.0 0.998**
百粒重
100-kernel weight
先玉335 Xianyu 335 y = -0.00009x + 46.3 0.982**
东单60 Dongdan 60 y = -0.0001x + 45.2 0.931**

Table 3

Growth process and demand for effective accumulated temperature of different maturity maize hybrids"

年份
Year
品种
Hybrid
密度
Density
播种期
Sowing date (M/D)
吐丝期
R1
(M/D)
生理成熟期
R6
(M/D)
吐丝前天数
Days before silking (d)
吐丝前
有效积温
EATBS (℃ d)
吐丝后天数
Days after silking (d)
吐丝后
有效积温
EATAS (℃ d)
生育期
Total growth
总有效积温
TEAT
(℃ d)
2018 东单60
Dongdan 60
D1 4/30 7/16 9/27 77 713.3 73 739.9 150 1453.2
D2 4/30 7/16 9/26 77 713.3 72 734.4 149 1447.7
D3 4/30 7/16 9/26 77 713.3 72 734.4 149 1447.7
D4 4/30 7/16 9/25 77 713.3 71 729.4 148 1442.7
先玉335
Xianyu 335
D1 4/30 7/15 9/22 76 699.8 69 721.5 145 1421.3
D2 4/30 7/16 9/22 77 713.3 68 710.6 145 1423.9
D3 4/30 7/16 9/21 77 713.3 67 704.8 144 1418.2
D4 4/30 7/16 9/20 77 713.3 66 699.4 143 1412.7
2019 东单60
Dongdan 60
D1 4/29 7/15 9/25 77 715.5 72 740.2 149 1455.8
D2 4/29 7/15 9/25 77 715.5 72 740.2 149 1455.8
D3 4/29 7/15 9/24 77 715.5 71 734.1 148 1449.7
D4 4/29 7/15 9/23 77 715.5 70 728.1 147 1443.6
先玉335
Xianyu 335
D1 4/29 7/14 9/22 76 702.0 69 729.2 145 1431.3
D2 4/29 7/15 9/21 77 715.5 68 715.7 145 1431.3
D3 4/29 7/15 9/20 77 715.5 67 710.3 144 1425.8
D4 4/29 7/15 9/19 77 715.5 66 705.4 143 1420.9

Fig. 2

Effects of plant density on grain weight of upper kernels and lower kernels in different maturity maize hybrids Treatments are the same as those given in Table 1."

Fig. 3

Effects of plant density on grain filling rate of upper kernels and lower kernels in different maturity maize hybrids Treatments are the same as those given in Table 1."

Table 4

Effect of plant density on grain filling parameters of upper and lower kernels in different maturity maize hybrids"

年份
Year
品种
Hybrid
粒位
Grain position
密度
Density
Tmax
(d)
Gmax
(g d-1)
Gmean
(g d-1)
D
(d)
Wmax
(g)
a b c 决定系数
R2
2018 东单60
Dongdan 60
下部
Lower
D1 32.2 1.07 0.72 51.0 18.3 36.5 44.1 0.118 0.997
D2 32.2 1.04 0.69 50.5 17.5 34.9 46.0 0.119 0.997
D3 32.0 1.00 0.67 50.0 16.6 33.3 46.3 0.120 0.997
D4 31.6 0.97 0.65 49.2 15.9 31.8 47.0 0.122 0.997
上部
Upper
D1 34.5 0.95 0.63 52.1 16.5 33.0 53.6 0.115 0.997
D2 34.5 0.92 0.61 51.2 15.7 31.3 57.1 0.117 0.997
D3 34.3 0.88 0.59 50.5 14.9 29.7 59.0 0.119 0.997
D4 34.1 0.86 0.57 49.6 14.2 28.4 61.8 0.121 0.997
先玉335
Xianyu 335
下部
Lower
D1 30.1 1.20 0.80 49.0 19.5 39.0 39.8 0.123 0.996
D2 29.8 1.17 0.78 47.6 18.5 37.6 43.1 0.126 0.996
D3 29.5 1.14 0.76 46.4 17.6 35.6 45.4 0.129 0.996
D4 29.4 1.09 0.72 45.7 16.6 33.6 47.6 0.131 0.997
上部
Upper
D1 32.4 1.03 0.69 50.6 17.3 34.6 46.7 0.119 0.997
D2 32.2 0.99 0.66 49.5 16.3 33.2 49.2 0.121 0.998
D3 31.9 0.95 0.64 48.3 15.4 31.2 52.8 0.124 0.998
D4 31.8 0.92 0.61 47.0 14.4 29.3 58.0 0.128 0.998
2019 东单60
Dongdan 60
下部
Lower
D1 32.1 1.05 0.70 52.1 18.2 36.5 40.4 0.115 0.997
D2 32.1 1.01 0.68 51.6 17.4 34.9 42.1 0.116 0.997
D3 31.9 0.98 0.65 51.1 16.6 33.3 42.3 0.117 0.997
D4 31.5 0.95 0.63 50.4 15.9 31.8 42.8 0.119 0.997
上部
Upper
D1 34.1 0.94 0.63 52.0 16.3 32.5 51.3 0.115 0.997
D2 34.2 0.91 0.60 51.0 15.4 30.9 54.8 0.118 0.997
D3 33.9 0.87 0.58 50.3 14.7 29.3 56.6 0.119 0.997
D4 33.5 0.85 0.57 48.8 13.9 27.8 61.2 0.123 0.997
先玉335
Xianyu 335
下部
Lower
D1 30.0 1.17 0.78 50.3 19.5 39.1 35.7 0.119 0.996
D2 29.7 1.14 0.76 48.9 18.6 37.1 38.5 0.123 0.996
D3 29.4 1.11 0.74 47.7 17.6 35.2 40.4 0.126 0.996
D4 29.3 1.06 0.71 46.9 16.6 33.2 42.4 0.128 0.997
上部
Upper
D1 32.3 1.01 0.67 51.6 17.3 34.6 42.7 0.116 0.997
D2 32.1 0.97 0.65 50.6 16.3 32.6 45.0 0.118 0.998
D3 31.8 0.93 0.62 49.3 15.4 30.7 48.1 0.122 0.998
D4 31.7 0.90 0.60 48.0 14.4 28.8 52.7 0.125 0.998

Table 5

Analysis of variance of moisture content of maize with different maturity hybrids"

变异来源
Source of variation
平方和
Sum of squares
自由度
Degrees freedom
均方
Mean square
F
F-value
年份Year (Y) 1.16 1 1.16 146.05**
品种Hybrid (H) 5.45 1 5.45 683.78**
密度Density (D) 28.13 3 9.38 1176.76**
粒位Grain position (GP) 130.93 1 130.93 16,433.32**
Y×H 0.12 1 0.12 15.38**
Y×D 0.01 3 0.01 0.43
Y×GP 0.13 1 0.13 16.28**
H×D 0.10 3 0.03 4.04**
H×GP 101.87 1 101.87 12,786.23**
D×GP 0.22 3 0.07 9.37**
Y×H×D 0.01 3 0.01 0.38
Y×H×GP 0.15 1 0.15 18.59**
Y×D×GP 0.01 3 0.01 0.29
H×D×GP 0.78 3 0.26 32.67**
Y×H×D×GP 0.01 3 0.01 0.18
误差Error 0.51 64 0.01
总变异Total variation 84,066.82 96

Table 6

Effects of plant density on the dehydration rate of upper and lower kernels in different maturity maize hybrids"

品种
Hybrid
粒位
Grain position
密度
Density
2018 2019
吐丝后有效积
积温
EATAS (℃ d)
生理成熟时籽粒
含水率
GMCPM (%)
总脱水速率
TDR
(% ℃ d-1)
吐丝后有效积
积温
EATAS (℃ d)
生理成熟时籽粒
含水率
GMCPM (%)
总脱水速率
TDR
(% ℃ d-1)
东单60
Dongdan 60
下部
Lower

D1 739.9 32.9 a 0.078 c 740.2 32.6 a 0.077 c
D2 734.4 32.5 a 0.078 c 740.2 32.2 a 0.078 c
D3 734.4 31.9 a 0.080 c 734.1 31.6 a 0.079 c
D4 729.4 31.2 b 0.081 b 728.1 30.9 b 0.081 b
上部
Upper
D1 739.9 31.9 a 0.079 c 740.2 31.6 a 0.079 c
D2 734.4 31.0 b 0.080 b 740.2 30.7 b 0.080 b
D3 734.4 30.5 b 0.081 b 734.1 30.2 c 0.081 b
D4 729.4 30.1 c 0.083 a 728.1 29.8 c 0.082 a
先玉335
Xianyu 335
下部
Lower

D1 721.5 30.8 b 0.082 d 729.2 30.5 b 0.082 d
D2 710.6 30.4 c 0.084 d 715.7 30.1 c 0.084 d
D3 704.8 29.3 d 0.086 b 710.3 29.0 d 0.086 b
D4 699.4 28.8 d 0.087 a 705.4 28.5 d 0.088 a
上部
Upper
D1 721.5 30.0 c 0.083 d 729.2 29.7 c 0.083 d
D2 710.6 29.7 d 0.085 c 715.7 29.4 d 0.085 c
D3 704.8 29.1 d 0.086 b 710.3 28.9 d 0.086 b
D4 699.4 28.5 d 0.088 a 705.4 28.2 d 0.088 a

Table 7

Fitting results of Logistic power model of upper and lower kernels in different maturity maize hybrids"

年份
Year
品种
Hybrid
粒位
Grain
position
密度
Density
a b c 决定系数
R2
吐丝-含水率28%所需
有效积温
Effective accumulated temperature from silking to 28% MC (℃ d)
吐丝-含水率25%所需
有效积温
Effective accumulated
temperature from silking to 25% MC (℃ d)
2018
东单60
Dongdan 60
下部
Lower
D1 96.1 506.2 1.85 0.993 817.2 889.2
D2 95.7 508.9 1.97 0.994 796.3 862.2
D3 95.5 506.7 2.04 0.994 780.1 842.4
D4 95.3 504.6 2.09 0.995 767.7 827.6
上部
Upper
D1 94.5 525.1 2.17 0.995 782.3 841.1
D2 95.2 512.2 2.18 0.994 764.7 821.8
D3 94.9 512.2 2.27 0.994 751.7 805.6
D4 94.7 508.8 2.35 0.995 736.5 787.6
先玉335
Xianyu 335
下部
Lower
D1 93.7 521.7 1.99 0.995 800.6 866.7
D2 94.0 518.0 2.05 0.995 787.4 850.5
D3 93.9 512.5 2.11 0.995 768.9 828.6
D4 93.9 512.4 2.20 0.996 756.8 813.2
上部
Upper
D1 92.9 530.5 2.25 0.998 770.1 826.2
D2 93.4 527.6 2.34 0.996 758.3 811.5
D3 92.9 530.5 2.48 0.997 744.4 793.6
D4 93.1 523.9 2.56 0.997 728.1 774.5
2019 东单60
Dongdan 60
下部
Lower
D1 95.4 444.0 1.85 0.994 820.2 894.7
D2 95.1 446.5 1.97 0.995 798.8 866.8
D3 94.9 444.7 2.04 0.995 782.3 846.5
D4 94.6 442.9 2.09 0.996 769.7 831.4
上部
Upper
D1 93.9 460.8 2.17 0.995 784.8 845.5
D2 94.5 449.6 2.18 0.995 766.8 825.6
D3 94.3 449.8 2.27 0.995 753.6 809.0
D4 94.0 446.8 2.35 0.996 738.2 790.8
先玉335
Xianyu 335
下部
Lower
D1 93.1 457.3 1.98 0.995 803.8 872.3
D2 93.4 454.2 2.04 0.995 790.1 855.4
D3 94.4 444.2 2.07 0.995 771.3 833.0
D4 94.5 443.8 2.15 0.996 758.9 817.1
上部
Upper
D1 92.3 465.4 2.25 0.997 772.7 830.7
D2 92.8 463.0 2.33 0.996 760.7 815.5
D3 92.3 465.8 2.48 0.997 746.5 797.2
D4 92.5 460.2 2.57 0.998 729.7 777.6

Fig.4

Correlation analysis of grain filling parameters and dehydration rates upper and lower kernels in maize A: correlation analysis between lower grain dehydration and grain filling parameters; B: correlation analysis between upper grain dehydration and grain filling parameters; Gmean: average filling rate; D: grout duration; TDR: total dehydration rate; MCAPM: MC at physiological maturity; ATFDTPM: accumulated temperature from anthesis to physiological maturity; 100KW: 100-kernel weight. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[2] Sango L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Res, 2002,79:39-51.
[3] Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004,88:103-114.
[4] Shen L X, Huang Y K, Li T. Top-grain filling characteristics at an early stage of maize (Zea mays L.) with different nitrogen use efficiencies. J Integr Agric, 2017,16:626-639.
[5] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019,45:1868-1879 (in Chinese with English abstract).
[6] Wang J T, Kang S Z, Du T S, Tong L, Ding R S, Li S E. Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production. Agric Water Manag, 2019,213:128-134.
[7] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013,39:1452-1461.
Xu Y J, Gu J D, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013,39:1452-1461 (in Chinese with English abstract).
[8] Wei S S, Wang X Y, Li G H, Qin Y Y, Jiang D, Dong S T. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear position. Front Plant Sci, 2019,10:180.
pmid: 30881365
[9] 张巽, 郝建平, 王璞, 张萍, 陈璐洁. 灌浆期低温对离体培养玉米强弱势粒发育的影响. 中国农业科学, 2018,51:2263-2273.
Zhang Y, Hao J P, Wang P, Zhang P, Chen L J. Effects of low temperature on maize superior and inferior kernels development during grain filling in vitro. Sci Agric Sin, 2018,51:2263-2273 (in Chinese with English abstract).
[10] 李少昆, 王克如, 谢瑞芝, 明博. 机械粒收推动玉米生产方式转型. 中国农业科学, 2018,51:1842-1844.
Li S K, Wang K R, Xie R Z, Ming B. Grain mechanical harvesting technology promotes the transformation of maize production mode. Sci Agric Sin, 2018,51:1842-1844 (in Chinese with English abstract).
[11] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
[12] 乔江方, 李川, 刘京宝, 朱卫红, 夏来坤, 谷利敏, 黄璐. 夏玉米子粒含水率和子粒灌浆的粒位差异及其关系研究. 玉米科学, 2016,24(1):56-62.
Qiao J F, Li C, Liu J B, Zhu W H, Xia L K, Gu L M, Huang L. Grain position effect of maize grain moisture content and grain filling and their relationship. J Maize Sci, 2016,24(1):56-62 (in Chinese with English abstract).
[13] 万泽花, 任佰朝, 赵斌, 刘鹏, 董树亭, 张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应. 作物学报, 2018,44:1517-1526.
Wan Z H, Ren B Z, Zhao B, Liu P, Dong S T, Zhang J W. Grain filling and dehydration characteristics of summer maize hybrids differing in maturities and effect of plant density. Acta Agron Sin, 2018,44:1517-1526 (in Chinese with English abstract).
[14] 金益, 王振华, 张永林, 王殊华, 王云生. 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32.
Jin Y, Wang Z H, Zhang Y L, Wang S H, Wang Y S. Difference analysis on the natural dry rate of kernel after wax ripening in maize hybrids. J Northeast Agric Univ, 1997,28(1):29-32 (in Chinese with English abstract).
[15] 钱春荣, 王荣焕, 赵久然, 于洋, 郝玉波, 徐田军, 姜宇博, 宫秀杰, 李梁, 葛选良. 不同熟期玉米品种的籽粒灌浆特性及其与温度关系研究. 中国农业科技导报, 2017,19:105-114.
Qian C R, Wang R H, Zhao J R, Yu Y, Hao Y B, Xu T J, Jiang Y B, Gong X J, Li L, Ge X L. Study on the grain filling characteristics and their relationship with temperature of maize hybrids differing in maturities. J Agric Sci Technol, 2017,19(8):105-114 (in Chinese with English abstract).
[16] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47:3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014,47:3557-3565 (in Chinese with English abstract).
[17] Wang X Y, Wang X L, Xu C C, Tian W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019,59:1-12.
[18] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017,50:2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize hybrids. Sci Agric Sin, 2017,50:2061-2070 (in Chinese with English abstract).
[19] Yan P, Chen Y Q, Sui P, Vogel A, Zhang X P. Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Res, 2018,223:83-92.
[20] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报, 2004,27(4):20-25.
Yan D C, Zhu Y, Cao W X. A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004,27(4):20-25 (in Chinese with English abstract).
[21] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀芝, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014. 40:1650-1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y L, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth stages. Acta Agron Sin, 2014,40:1650-1657
[22] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract).
[23] Zhang M, Chen T, Latifmanesh H, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? J Integr Agric, 2018,17:1745-1757.
[24] Gonzalez V H, Tollenaar M, Bowman A, Good B, Lee E A. Maize yield potential and density tolerance. Crop Sci, 2018,58:472-485.
[25] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018,51:1890-1898.
Zhang W X, Ming B, Wang K R, Liu C W, Hou P, Chen J L, Zhang G Q, Yang J J, Che S L, Xie R Z, Li S K. Analysis of sowing and harvesting allocation of maize based on cultivar maturity and grain dehydration characteristics. Sci Agric Sin, 2018,51:1890-1898 (in Chinese with English abstract).
[26] 谢光辉, 杨建昌, 王志琴, 朱庆森. 水稻籽粒灌浆特性及其与籽粒生理活性的关系. 作物学报, 2006,27:557-565.
Xie G H, Yang J C, Wang Z Q, Zhu Q S. Grain filling characteristics of rice and their relationships to physiological activities of grains. Acta Agron Sin, 2006,27:557-565 (in Chinese with English abstract).
[27] Brenda L G, Lucas B, María E O. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2006,1:1-9.
[28] Gasura E, Setimela P, Edema R, Gibson P T, Okori P, Tarekegne A. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Sci, 2013,53:2295-2303.
[29] 方兴松. 种植密度对玉米籽粒灌浆及脱水特性的影响分析. 中国农业信息, 2014, (9):51.
Fang X S. Effect of planting density on grain filling and dehydration characteristics of maize. Chin Agric Inf, 2014, (9):51 (in Chinese).
[30] 王兵, 刘冬玲, 薛林, 张振良. 密度对玉米生理成熟后籽粒含水率及脱水速率的影响. 安徽农业科学, 2018,46(20):38-40.
Wang B, Liu D L, Xue L, Zhang Z L. Effects of planting density on kernel moisture content and dehydration rate after maize physiological maturity. J Anhui Agric Sci, 2018,46(20):38-40 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[3] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[4] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] YANG Jin, BAI Ai-Ning, BAI Xue, CHEN Juan, GUO Lin, LIU Chun-Ming. Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development [J]. Acta Agronomica Sinica, 2022, 48(2): 292-303.
[7] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[8] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[9] ZHANG Zhi-Xing, CHEN Hua, MIN Xiu-Mei, XU Hai-Long, SONG Guo, LIN Wen-Xiong. Preliminary study of the peptide aptamer R18 promotes grain filling of rice inferior spikelets [J]. Acta Agronomica Sinica, 2021, 47(7): 1332-1341.
[10] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[11] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[12] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[13] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[14] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[15] WANG Rong-Huan, XU Tian-Jun, CHEN Chuan-Yong, WANG Yuan-Dong, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Xiu-Zhi, ZHAO Jiu-Ran. Grain filling and dehydrating characteristics of maize hybrids with different maturity [J]. Acta Agronomica Sinica, 2021, 47(1): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!