Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 837-846.doi: 10.3724/SP.J.1006.2021.04173
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Gui-Fang1(), MAN Xia-Xia1, ZHANG Yi-Juan2, GAO Hao1, SUN Zhao-Xia1,3, LI Hong-Ying1,3, HAN Yuan-Huai1,3, HOU Si-Yu1,3,*()
[1] |
Young D W. The biosynthesis of the vitamins thiamin, riboflavin, and folic acid. Nat Prod Rep, 1986,3:395-419.
doi: 10.1039/np9860300395 pmid: 3547188 |
[2] |
Chistoserdova L, Vorholt J A, Thauer R K, Lidstrom M E. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science, 1998,281:99-102.
doi: 10.1126/science.281.5373.99 pmid: 9651254 |
[3] | 胡廷章. 生物体中一碳单位的代谢. 四川三峡学院学报, 1999, (5):74-77. |
Hu Y Z. The metabolism of one carbon uni tin living. J Chongqing Three Gorges Univ, 1999, (5):74-77 (in Chinese with English abstract). | |
[4] | Strum W, Nixon P F, Bertino J B, Bertino H J. Intestinal folate absorption: I. 5-methyltetrahydrofolic acid. J Investig, 1971,50:1910-1916. |
[5] |
Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm, 1989,45:263-335.
doi: 10.1016/s0083-6729(08)60397-0 pmid: 2688305 |
[6] | 单齐冀. 糯玉米种质资源评价及籽粒发育过程叶酸合成代谢规律研究. 华南理工大学硕士学位论文, 广东广州, 2019. |
Shan Q J. The Germplasm Evaluation and Folate Synthetic Metabolism during Kernel Development of Waxy Maize. MS Thesis of South China University of Technology, Guangzhou, Guangdong, China, 2019 (in Chinese with English abstract). | |
[7] |
Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep, 2019,9:99-102.
doi: 10.1038/s41598-018-37471-0 pmid: 30643172 |
[8] | 张大众, 刘佳佳, 冯佰利. 中国谷子种植利用史及其演进启示. 草业学报, 2018,27(3):173-186. |
Zhang D Z, Liu J J, Feng B L. History of foxtail millet planting, husbandry, and societal utilization in China. Acta Pratacult Sin, 2018,27(3):173-186 (in Chinese with English abstract). | |
[9] | 郑楠楠, 綦文涛, 王春玲, 贠婷婷, 幺杨, 任贵兴. 不同品种谷子营养成分及功能活性成分差异化分析. 粮油食品科技, 2018,26(2):34-39. |
Zheng N N, Qi W T, Wang C L, Yun T T, Yao Y, Ren G X. Comparative analysis of nutritional and functional components in different kinds of millet. Sci Technol Cereals Oils Foods, 2018,26(2):34-39 (in Chinese with English abstract). | |
[10] | Paul M F. Dietary Reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends Food Sci Technol, 2000,11:296-297. |
[11] | 邵丽华. 山西省小米叶酸含量的研究. 山西师范大学硕士学位论文, 山西临汾, 2014. |
Shao L H. Study of Folic Acid Content in Millet of Shanxi Province. MS Thesis of Shanxi Normal University, Linfen, Shanxi, China, 2014 (in Chinese with English abstract). | |
[12] | 侯思宇, 宋敏, 闫陆飞, 孙朝霞, 韩渊怀, 李红英. HPLC法测定谷子籽粒叶酸含量及种质资源评价. 土壤, 2018,50:1235-1240. |
Hou S Y, Song M, Yan L F, Sun Z X, Han Y H, Li H Y. Evaluation and detection of folic acid content of seeds among foxtail millet accessions by HPLC method. Soils, 2018,50:1235-1240 (in Chinese with English abstract). | |
[13] | Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H, Gellynck X, Lambert W, Stove C, Van Der Straeten D. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol, 2015,33:1076-1078. |
[14] |
Jacob J A. Twenty years after folic acid fortification, FDA ponders expansion to corn masa flour. JAMA, 2016,315:1821-1822.
doi: 10.1001/jama.2016.2611 pmid: 27082432 |
[15] |
Mahato A, Vyas S, Chatterjee N S. HPLC-UV estimation of folic acid in fortified rice and wheat flour using enzymatic extraction and immunoaffinity chromatography enrichment: an interlaboratory validation study. J AOAC Int, 2020,103:73-77.
doi: 10.5740/jaoacint.19-0207 pmid: 31455468 |
[16] |
Storozhenko S, Brouwer D V, Volckaert M, Navarrete O, Blancquaert D, Zhang G F, Lambert W, Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nat Biotechnol, 2007,25:1277-1279.
doi: 10.1038/nbt1351 pmid: 17934451 |
[17] | 汪冉冉. 过量表达GCHI和ADCS基因对提高植物叶酸含量的研究. 兰州大学硕士学位论文, 甘肃兰州, 2013. |
Wang R R. The Study on Enhancing Folate Content in Plants by Overexpression of GCHI and ADCS Genes. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2013 (in Chinese with English abstract). | |
[18] | Wan X, Han L D, Yang M, Zhang H Y, Zhang C Y, Hu P. Simultaneous extraction and determination of mono-polyglutamyl folates using high-performance liquid chromatography-tandem mass spectrometry and its applications in starchy crops. Analy Bioanaly Chem, 2019,411:2891-2904. |
[19] | Lian T, Guo W Z, Chen M R, Li J L, Liang Q J, Liu F, Meng H Y, Xu B S, Chen J F, Zhang C Y, Jiang L. Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels. BMC Plant Biol, 2015,15:1-14. |
[20] | 韩娟英, 何曦, 蒋宙蕾, 梅沙, 张宁, 吴殿星. 富含叶酸水稻研究进展. 中国稻米, 2017,23(6):7-12. |
Han J Y, He X, Jiang Z L, Mei S, Zhang N, Wu D X. Progress on high folate content rice. China Rice, 2017,23(6):7-12 (in Chinese with English abstract). | |
[21] |
Blancquaert D, Van Daele J, Storozhenko S, Stove C P, Lambert W, Van Der Straeten D. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol Biol, 2013,83:329-349.
doi: 10.1007/s11103-013-0091-7 pmid: 23771598 |
[22] |
Hanson A D, Gregory J F. Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol, 2011,62:105-125.
doi: 10.1146/annurev-arplant-042110-103819 pmid: 21275646 |
[23] |
Albani D, Parisi B, Carbonera D, Cella R. Dihydrofolate reductase from Daucus carota cell suspension cultures: purification, molecular and kinetic characterization. Plant Mol Biol, 1985,5:363-372.
pmid: 24306990 |
[24] |
Bachmann B, Follmann H. Deoxyribonucleotide biosynthesis in green algae: characterization of thymidylate synthase-dihydrofolate reductase in Scenedesmus obliquus. Arch Biochem Biophys, 1987,256:244-252.
doi: 10.1016/0003-9861(87)90442-5 pmid: 3606123 |
[25] |
Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A, Leroux O, Rébeillé F, Schellens J H, Blancquaert D, Stove C P, Van Der Straeten D. Dihydrofolate reductase/ Thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell, 2017,29:2831-2853.
doi: 10.1105/tpc.17.00433 pmid: 28939595 |
[26] |
Kim S E, Cole P D, Cho R C, Ly A, Ishiguro L, Sohn K J, Croxford R, Kamen B A, Kim Y I. γ-glutamyl hydrolase modulation and folate influence chemosensitivity of cancer cells to 5-fluorouracil and methotrexate. British J Cancer, 2013,109:2175-2188.
doi: 10.1038/bjc.2013.579 |
[27] |
Cheng C Y, Krishnakumar V, Chan A P, Thibaud N F, Schobel S, Town C D. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J, 2017,89:789-804.
doi: 10.1111/tpj.13415 pmid: 27862469 |
[28] |
Swarup R, Crespi M, Bennett M J. One gene, many proteins: mapping cell-specific alternative splicing in plants. Dev Cell, 2016,39:383-385.
doi: 10.1016/j.devcel.2016.11.002 pmid: 27875679 |
[29] |
Zhang X, Mount S M. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. Plant Physiol, 2009,150:1450-1458.
doi: 10.1104/pp.109.138180 pmid: 19403727 |
[30] |
Airoldi C A, Bergonzi S, Davies B. Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci USA, 2010,107:18898-18902.
doi: 10.1073/pnas.1009050107 pmid: 20956314 |
[31] |
Severing E I, Dijk A D J V, Morabito G, Lange J B, Immink R G H, van Ham R C H J. Predicting the impact of alternative splicing on plant MADS domain protein function. PLoS One, 2012,7:e30524.
doi: 10.1371/journal.pone.0030524 pmid: 22295091 |
[32] |
Chen M X, Zhang K L, Gao B, Yang J A, Tian Y, Das D, Fan D, Dai L, Hao G, Yang G, Zhang J H, Zhu F, Fang Y M. Phylogenetic comparison of 5′ splice site determination in central spliceosomal proteins of the U1-70K gene family, in response to developmental cues and stress conditions. Plant J, 2020,103:357-378.
doi: 10.1111/tpj.14735 pmid: 32133712 |
[33] |
González B, Vera P. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. Mol Plant, 2019,12:1227-1242.
pmid: 31077872 |
[34] | John S, Fabrice R, John F. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric, 2000,80:795-824. |
[35] |
Wang L, Kong D D, Lyu Q, Niu G Q, Han T T, Zhao X C, Meng S L, Cheng Q, Guo S C, Du J, Wu Z L, Wang J Z, Bao F, Hu Y, Pan X J, Xia J C, Yuan D, Han L D, Lian T, Zhang C Y, Wang H Y, He X J, He Y K. Tetrahydrofolate modulates floral transition through epigenetic silencing. Plant Physiol, 2017,174:1274-1284.
doi: 10.1104/pp.16.01750 pmid: 28450424 |
[36] |
Finni W, Basem K, Marion W, Thomas H, Katrin F O, Wilfried S, Philippe S K, Corina V A. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mol Plant Pathol, 2015,16:616-622.
doi: 10.1111/mpp.12216 pmid: 25348251 |
[37] | 肖熙鸥, 林文秋, 李可, 冯雪峰, 李威, 邹华芬, 金辉. 茄子Enhanced disease susceptibility 1互作蛋白的初步筛选与分析. 热带作物学报, 2018,39:1580-1584. |
Xiao X O, Lin W Q, Li K, Feng X F, Li W, Zou H F, Jin H. Screening and analysis of candidate interactors of enhanced disease susceptibility 1 (SmEDS1) in eggplant. Chin J Trop Crops, 2018,39:1580-1584 (in Chinese with English abstract). |
[1] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[2] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[3] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[4] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[5] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[6] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[7] | HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081. |
[8] | LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612. |
[9] | JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649. |
[10] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[11] | ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323. |
[12] | QIN Tian-Yuan, SUN Chao, BI Zhen-Zhen, LIANG Wen-Jun, LI Peng-Cheng, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. |
[13] | JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062. |
[14] | TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996. |
[15] | Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711. |
|