Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1491-1510.doi: 10.3724/SP.J.1006.2021.04175
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Yan-Hua1,2(), LIU Jing-Sen1,2, LI Jia-Na1,2,*()
[1] | 金森森, 罗帅. 全球视角下的南美大豆贸易发展趋势. 中国粮食经济, 2014, (4):30-32. |
Jin S S, Luo S. The development trend of South American soybean trade from a global perspective. China Food Econ, 2014, (4):30-32 (in Chinese with English abstract). | |
[2] | 陶伯玉. 甘蓝型油菜主要农艺、品质性状的遗传分析和QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2015. |
Tao B Y. Genetic Analysis and QTL Mapping of Main Agronomic and Quality Traits in Brassica napus. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract). | |
[3] | 张卫. 明确大宗油料作物发展规划提升国内大宗油料作物自给力. 中国食品, 2016, (19):82-89. |
Zhang W. Clarify the development plan of bulk oil crops to enhance the self-sufficiency of domestic bulk oil crops. China Food, 2016, (19):82-89 (in Chinese with English abstract). | |
[4] | 徐露萍. 浅谈油菜种植技术的应用与推广. 南方农业, 2015,9(3):17-18. |
Xu L P. Talking about the application and extension of rape planting technology. Southern Agric, 2015,9(3):17-18 (in Chinese with English abstract). | |
[5] | 李培武, 丁小霞, 张文, 谢立华, 周海燕. 中加双低油菜质量标准体系比较及我国发展对策探讨. 农产品质量与安全, 2006, (6):23-26. |
Li P W, Ding X X, Zhang W, Xie L H, Zhou H Y. Comparison of quality standard systems for double-low rapeseed between China and Canada and discussion on my country’s development countermeasures. Agric Prod Quality Safety, 2006, (6):23-26 (in Chinese with English abstract). | |
[6] | Mirza H, Karim F M. Rapeseed (Brassica campestris) cultivation in dry season. Vdm Verlag Dr Müller, 2010,12:27-80. |
[7] | 傅廷栋. 油菜的品种改良. 作物研究, 2007,21(3):159-162. |
Fu T D. Rapeseed variety improvement. Crop Res, 2007,21(3):159-162 (in Chinese with English abstract). | |
[8] | Liersch A, Bocianowski J, Henryk W, Laurencja S. Assessment of genetic relationships in breeding lines and cultivars of Brassica napus and their implications for breeding winter oilseed rape. Crop Sci, 2016,56:15-40. |
[9] |
Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003,106:759-764.
doi: 10.1007/s00122-002-1171-2 |
[10] | Wen Y C, Fu T D, Tu J X, MA C Z, Shen J X, Wen J, Zhang S F. Factors analysis of silique shatter resistance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2010,32:25-29. |
[11] | Chen S, Qian T. Analysis on technical efficiency and influencing factors of rapeseed production. Asian Agric Res, 2016,8:1-7. |
[12] | Jiang H D, Zhou Q, Li N, Sun X F. Effect of Cd on the growth and physiological characteristics of rape seedlings. Chin J Oil Crop Sci, 2006,28:39-43. |
[13] | 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018,40:618-623. |
Zhang Z, Yin Y, Liu F, Wang J J, Fu T D. The current status and development countermeasures of multifunctional development and utilization of rapeseed in my country. Chin J Oil Crop Sci, 2018,40:618-623 (in Chinese with English abstract). | |
[14] |
Chen H, He H, Zou Y J, Chen W, Yu R B, Liu X, Yang Y, Gao Y M, Xu J L, Fan L M, Li Y, Li Z K, Deng X W. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet, 2011,123:869-879.
doi: 10.1007/s00122-011-1633-5 |
[15] | Ma T Q, Lin L B. Application of molecular marker technologies in rape breeding. Mol Plant Breed, 2004,2:728-732. |
[16] | Xiong Q F, Wen J, Li X H, Shen J X. Technological innovation and industrial development of rapeseed in China. J Agric Sci Technol, 2014,16:14-22. |
[17] |
Beecher H G, Dunn B W, Thompson J A, Humphreys E, Mathews S K, Timsina J. Effect of raised beds, irrigation and nitrogen management on growth, water use and yield of rice in south- eastern Australia. Aust J Exp Agric, 2006,46:1363-1372.
doi: 10.1071/EA04136 |
[18] |
Xu Z, Yu Z, Zhao J. Theory and application for the promotion of wheat production in China: past, present and future. J Sci Food Agric, 2013,93:2339-2350.
doi: 10.1002/jsfa.2013.93.issue-10 |
[19] |
Cheng L, Li H P, Qu B, Huang T, Tu J X, Fu T D, Liao Y C. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010,29:371-381.
doi: 10.1007/s00299-010-0828-6 |
[20] | Wang G C, Liu Z, Yang G S. Development of high oil content lines of Brassica napus through isolated microspore culture. Chin J Oil Crop Sci, 2007,29:382-386. |
[21] | Liao X, Wang H Z. Present status of rapeseed science and technology innovation system in China and suggestion for further development. J Agric Sci Technol, 2007,6:28-34. |
[22] |
Cheng L, Li H P, Qu B. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010,29:371-381.
doi: 10.1007/s00299-010-0828-6 |
[23] |
Zhang X K, Chen J, Chen L, Wang H Z, Li J N. Imbibition behavior and flooding tolerance of rapeseed seed ( Brassica napus L.) with different testa color. Genet Resour Crop Evol, 2008,55:1175-1184.
doi: 10.1007/s10722-008-9318-x |
[24] | Palmieri S, Leoni O. Industrial prospectives of rapeseed oil. Physiologic technological and qualitative aspects. Agric Rice, 1992,14:63-70. |
[25] | Weilenmann M E, Lúquez J, Suárez W. Variability of biological yield, economic yield and harvest index in soybean cultivars grown in irrigated and rainfed environments in Argentina. Tests Agrochem Cult, 2000,21:39-40. |
[26] |
Li S Y, Zhu R K, Varshney J, Zhan X, Zheng J, Shi X, Wang G, Wang H. A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm. Plant Biotechnol J, 2020,18:568-580.
doi: 10.1111/pbi.v18.2 |
[27] |
Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379-388.
doi: 10.1186/s12864-015-1607-0 |
[28] | 姚东和, 杨民胜, 李志辉. 林分密度对巨尾桉生物产量及生产力的影响. 中南林业科技大学学报, 2000,20(3):20-23. |
Yao D H, Yang M S, Li Z H. The effect of stand density on the biological yield and productivity of Eucalyptus grandis. J Central South Univ For Technol, 2000,20(3):20-23(in Chinese with English abstract). | |
[29] | 李跃建, 宋荷仙, 朱华忠. 小麦收获指数、生物产量和籽粒产量的稳定性分析. 西南农业学报, 1998, (1):25-30. |
Li Y J, Song H X, Zhu H Z. Analysis of stability of wheat harvest index, biological yield and grain yield. Southwest Agric J, 1998, (1):25-30 (in Chinese with English abstract). | |
[30] | Dai X L, Zhao J X, Xiang Y, Zhang T, Ren T B, Cheng G P. Correlation analysis of harvest index and plant traits of hybrid Brassica napus. Chin Agric Sci Bull, 2018,2:47-58. |
[31] |
Tian J, Ma K, Saaem I. Advancing high-throughput gene synthesis technology. Mol Biosyst, 2009,5:714-722.
doi: 10.1039/b822268c |
[32] |
Dillies M, Rau A, Aubert J, Hennequet C, Jeanmougin M, Servant A, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë C, Gall L, Schaëffer B, Le C, Guedj M, Jaffrézic F, Consortium. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinf, 2013,14:671-683.
doi: 10.1093/bib/bbs046 |
[33] |
Wang J X, Zhang X Q, Shi M L, Gao L J, Niu X F, Te R, Chen L, Zhang W W. Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Funct Integr Genomics, 2014,14:431-440.
doi: 10.1007/s10142-014-0370-7 |
[34] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020,46:1033-1051. |
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020,46:1033-1051 (in Chinese with English abstract). | |
[35] | 宋长新, 雷萍, 王婷. 基于WGCNA算法的基因共表达网络构建理论及其R软件实现. 基因组学与应用生物学, 2013,32:135-141. |
Song C X, Lei P, Wang T. Gene co-expression network construction theory based on WGCNA algorithm and its R software implementation. Genomics Appl Biol, 2013,32:135-141 (in Chinese with English abstract). | |
[36] |
Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Andrew H P, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154-1165.
doi: 10.1038/s41467-019-09134-9 |
[37] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
pmid: 17586829 |
[38] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005,21:263-265.
pmid: 15297300 |
[39] | Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011,696:291-303. |
[40] |
Livingston A K, Cruz J A, Kohzuma K, Dhingra A. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell, 2010,22:221-233.
doi: 10.1105/tpc.109.071084 |
[41] |
Mariam S. Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J Exp Bot, 2004,55:2495-2503.
doi: 10.1093/jxb/erh257 |
[42] |
Mull L, Ebbs M L, Bender J. A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics, 2005,174:1161-1171.
doi: 10.1534/genetics.106.063974 |
[43] |
Ouyang B, Joung J G, Kolenovsky A, Koh C, Nowak J, Caplan A, Keller W A, Cui Y, Cutler A J, Tsang E W. Transcriptome profiling and methyl homeostasis of an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1). Plant Mol Biol, 2012,79:315-331.
doi: 10.1007/s11103-012-9914-1 |
[44] |
Godge M R, Kumar D, Kumar P P. Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Rep, 2008,27:1497-1507.
doi: 10.1007/s00299-008-0576-z |
[45] |
Pedro S C F R, Mazhar S, Rosalba M, Mathilde F, Stéphanie B, Rebecca L, Barbara M, Conrad W, Hervé V, Ian F. The Arabidopsis H OMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell, 2005,17:404-417.
pmid: 15659630 |
[46] |
López C, Abuzaid O, Lawson T, Raines C A. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the calvin-benson cycle. J Exp Bot, 2017,68:2285-2298.
doi: 10.1093/jxb/erx084 |
[47] |
Fermani S, Trivelli X, Sparla F, Thumiger A, Calvaresi M, Marri L, Falini G, Zerbetto F, Trost P. Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly. J Biol Chem, 2012,287:21372-21383.
doi: 10.1074/jbc.M112.350355 |
[48] |
Singh P, Kaloudas D, Raines C A. Expression analysis of the Arabidopsis CP12 gene family suggests novel roles for these proteins in roots and floral tissues. J Exp Bot, 2008,59:3975-3985.
doi: 10.1093/jxb/ern236 |
[49] |
Marri L, Thieulin P G, Lebrun R, Puppo R, Zaffagnini M, Trost P, Gontero B, Sparla F. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress. Biochimie, 2014,97:228-237.
doi: 10.1016/j.biochi.2013.10.018 |
[50] | Ferro M, Salvi D, Seigneurin B D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le G S, KiefferJ S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Biol Prot, 2010,9:1063-1084. |
[51] |
Henry E, Fung J, Liu G, Drakakak G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet, 2015,11:e1005199.
doi: 10.1371/journal.pgen.1005199 |
[52] |
Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol, 2002,129:1464-1472.
doi: 10.1104/pp.005777 |
[53] | Lu K, Liu P, Zhang C, Lu J H, Yang B, Xiao Z C, Liang Y, Xu X F, Qu C M, Zhang K, Liu L Z, Zhu Q L, Fu M L, Yuan X Y, Li J N. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017,8:206-220. |
[54] |
Lu K, Xiao Z C, Jian H J, Liu P, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 |
[55] | Sun Y Y, Liu T T, Yang H Y, Zuo Q S, Zhou G S, Wu J S. The correlation between the growth characteristics of rapeseed stalk and its yield and the lodging resistance. Hubei Agric Sci, 2014,53:30-35. |
[56] | 柳寒. 油菜灌浆期种子和角果皮基因表达差异及相关基因的功能分析. 华中农业大学博士学位论文, 湖北武汉, 2015. |
Liu H. Gene Expression and Functional Analysis in Seeds and Siliques of Rapeseed during the Filling Stage. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract). |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[4] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[5] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[6] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[7] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[8] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[9] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[10] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[11] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[12] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[13] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[14] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[15] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
|