Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1481-1490.doi: 10.3724/SP.J.1006.2021.04214

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9

ZHANG Wang(), XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang*()   

  1. College of Life Sciences and Oceanography, Shenzhen University/Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen 518071, Guangdong, China
  • Received:2020-09-19 Accepted:2021-01-13 Online:2021-08-12 Published:2021-02-25
  • Contact: YU Wei-Chang E-mail:zahngwang@foxmail.com;wyu@szu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31671766);Shenzhen Commission of Science and Technology Innovation Projects(JCYJ20190808143207457);Shenzhen Commission of Science and Technology Innovation Projects(JCYJ20180305124101630);Shenzhen Commission of Science and Technology Innovation Projects(JCYJ20170818094958663)

Abstract:

Oleate dehydrogenase (Δ12FAD or FAD2) is the key enzyme catalyzing the dehydrogenation of oleic acid (OA) at the C12 position to produce diunsaturated linoleic acid (LA). It controls the contents and ratios (O/L) of oleic acid and linoleic acid in plants. Increasing evidences in molecular biology research indicate that AhFAD2 is the key gene for the conversion of oleic acid to linoleic acid, and determines the relative content of oleic acid and linoleic acid in peanut seeds. In this study, the corresponding sgRNA sequences were designed based on AhFAD2 gene sequences, and a CRISPR/Cas9 gene editing vector was constructed to mutate the peanut FAD2A and FAD2B genes. After peanut gene transformation, gene mutations were identified by genomic sequence analysis of transgenic peanut flanking the sgRNA target sites. Target gene analysis indicated that 29 mutations of FAD2A gene in 16 transgenic peanut plants were obtained, among which 16 mutations caused protein sequence changes; 30 mutations in 11 transgenic peanut plants contained mutations in FAD2B gene, among which 17 mutations caused changes in protein sequence. Changes in the protein sequences of the FAD2A and FAD2B genes might affect the enzyme activity, change the catalytic dehydrogenation of oleic acid, hinder the synthesis of linoleic acid, and thus increase the content of peanut oleic acid. These FAD2 gene mutants are valuable in the study of fatty acid metabolism and the breeding of high oleic peanuts.

Key words: peanut, oleic acid, linoleic acid, FAD2, genome editing

Fig. 1

Construction of genome editing vector Primer 1 and primer 2 containing gRNA1 and gRNA2 sequences, are used to synthesize sgRNA by PCR with pCBC-DT1T2 as template. The synthesized sgRNA was cloned into pSKE401 plasmid by Bsa I restriction enzyme sites to obtain FAD2T1T1 genome editing construct. LB, RB denote T-DNA left and right border sequences; U6-26p, U6-29p are promoters while U6-29T and U6-26T are terminators of Arabidopsis U6 gene; 35Sp-Cas9-NosT, 35Sp-NptII-polyA are gene expression cassettes of Cas9 and NptII genes."

Fig. 2

FAD2A and FAD2B gene alignment and the selection of CRISPR target sites in peanut Black dots denote identical nucleotides; T1 and T2 indicate the target sequences of genome editing; PAM sequences are underlined with red lines."

Fig. 3

Gene transformation and analysis of transgenic lines in peanut A: gene transformation vector. T1 and T2 are gRNA1 and gRNA2 target sites; B: transgenic calli (left) and plantlets (right); C: PCR identification of transgenic plants. The amplified band is Cas9 gene fragment, and the arrow denotes 400 bp DNA marker; D: sequence analysis of genome editing mutants."

Table 1

Mutation sites of FAD2A gene"

突变位点
Mutation site
核酸Nucleic acid 密码子Codon 氨基酸Amino acid
突变前Before mutation 突变后
After mutation
突变前Before
mutation
突变后
After mutation
突变前Before
mutation
突变后
After mutation
40 A G AAG GAG K E
150 C A TCC TCA
172 G A GTG ATG V M
214 A C AAG CAG K Q
282 T C ACT ACC
333 C T TAC TAT
362 C T ACC ATC T I
384 T C GTT GTC
416 C A CGC CAC R H
419 A T CAC CTC H L
432 C A ACC ACA
448 G A GAC AAC D N
451 G T GAA TAA E 终止密码Stop codon
464, 465 CA TG CCA CTG P L
487 T C TGG CGG W R
515 C T CCA CTA P L
518 G A GGG GAG G E
528 C T ATC ATT
534 C T CTC CTT
668 插入序列7个碱基7 bp insertion (CTCAGGA) 引起移码突变Frame shift mutation
721 C T CTG TTG
800 A G TAT TGT Y C
807 G A CAG CAA
930 G A ACG ACA
963 T A CCT CCA
1017 C T TAC TAT
1039 T G TTT GTT F V
1047 A G AAA AAG
1105 A C AAG CAG K Q

Table 2

Mutation sites of FAD2B gene"

突变位点
Mutation site
核酸Nucleic acid 密码子Codon 氨基酸Amino acid
突变前
Before mutation
突变后
After mutation
突变前
Before mutation
突变后
After mutation
突变前
Before mutation
突变后
After mutation
40 A G AAG GAG K E
150 A C TCA TCC
172 A G ATG GTG M V
214 A C AAG CAG K Q
282 C T ACC ACT
333 C T TAC TAT
362 C T ACC ATC T I
384 T C GTT GTC
416 C A CGC CAC R H
419 A T CAC CTC H L
432 A C ACA ACC
451 G T GAA TAA E 终止密码Stop codon
464 C T CCG CTG P L
487 T C TGG CGG W R
515 C T CCA CTA P L
518 G A GGG GAG G E
528 T C ATT ATC
534 T C CTT CTC
668 插入序列7个碱基 7 bp insertion (CTCAGGA) 引起移码突变Frame shift mutation
721 T C TTG CTG
800 A G TAT TGT Y C
807 G A CAG CAA
907 G A GCA ACA A T
930 G A ACG ACA
963 T A CCT CCA
982 G T GCA TCA A S
1017 C T TAC TAT
1039 G T GTT TTT V F
1047 A G AAA AAG
1105 C A CAG AAG Q K
[1] 万书波, 封海胜, 张建成. 打造强势花生产业, 参与国际竞争. 花生学报, 2003,32(增刊1):5-10.
Wan S B, Feng H S, Zhang J C. Development of a strong competitive peanut production in China. J Peanut Sci, 2003,32(S1):5-10 (in Chinese with English abstract).
[2] 张智猛, 戴良香, 李美, 于遒功, 张玉凤, 万书波. 花生种子产业现状与发展对策. 中国农业科技导报, 2013,15(1):30-37.
Zhang Z M, Dai L X, Li M, Yu Q G, Zhang Y F, Wan S B. Present status and development countermeasures of peanut seed industry. J Agric Sci Technol, 2013,15(1):30-37 (in Chinese with English abstract).
[3] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 中国油脂, 2020,45(11):116-122.
Zhang L W, Wang L W. Development status, existing problems and policy recommendation for peanut industry in China. China Oils Fats, 2020,45(11):116-122 (in Chinese with English abstract).
[4] 徐同成, 王文亮, 程安玮, 刘丽娜, 杜方岭. 花生油的营养价值及掺伪检测技术. 粮油加工, 2010, (8):29-32.
Xu T C, Wang W L, Cheng A W, Liu L N, Du F L. Nutritional value of peanut oil and method for the detection of fake peanut oil. Cereals Oils Proc, 2010, (8):29-32 (in Chinese).
[5] 王传堂, 朱立贵. 高油酸花生. 上海: 上海科技出版社, 2017. pp 27-35.
Wang C T, Zhu L G. High Oleic Peanut. Shanghai: Shanghai Scientific and Technical Publishers, 2017. pp 27-35(in Chinese).
[6] 李丽, 崔顺立, 穆国俊, 杨鑫雷, 侯名语, 李文平, 刘富强, 刘立峰. 高油酸花生遗传改良研究进展. 中国油料作物学报, 2019,41:986-997.
Li L, Cui S L, Mu G J, Yang X L, Hou M Y, Li W P, Liu F Q, Liu L F. Research progress of peanut breeding with high oleic acid. Chin J Oil Crop Sci, 2019,41:986-997 (in Chinese with English abstract).
[7] Miller J F, Zimmerman D C, Vick B A. Genetic control of high oleic acid content in sunflower oil. Crop Sci, 1987,275:923.
[8] Braddoc J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995,60:489-493.
[9] 曹福亮, 王欢利, 郁万文, 程华. 高等植物脂肪酸去饱和酶及编码基因研究进展. 南京林业大学学报(自然科学版), 2012,36(2):125-132.
Cao F L, Wang H L, Yu W W, Cheng H. Progress of research on fatty acid desaturase and their coding genes in higher plant. J Nanjing For Univ (Nat Sci Edn), 2012,36(2):125-132 (in Chinese with English abstract).
[10] Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12 desaturase activity. Plant Sci, 1993,91:15-21.
doi: 10.1016/0168-9452(93)90184-2
[11] Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000,263:796-805.
doi: 10.1007/s004380000244
[12] Norden A J, Gorbet D W, Knauft D A. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[13] 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019,40(5):38-49.
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agric Univ, 2019,40(5):38-49 (in Chinese with English abstract).
[14] Zhang Y, Ma X, Xie X, Liu Y. CRISPR/Cas9-based genome editing in plants. Prog Mol Biol Trans, 2017,149:133-150.
[15] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014,14:327.
doi: 10.1186/s12870-014-0327-y
[16] Livingstone D M, Birch R G. Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds. Mol Breed, 1999,5:43-51.
doi: 10.1023/A:1009658313170
[17] Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]: II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000,263:806-811.
doi: 10.1007/s004380000243
[18] Barkley N A, Chamberlin K D C, Wang M L, Pittman R N. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2010,253:541-548.
[19] Chen Z, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high oleate trait selection. Plant Mol Biol Rep, 2010,283:542-548.
[20] Moore K M. High Oleic Acid Peanut, 1999, US Patent, 5945578.
[21] Horn M E, Eikenberry E J, Lanuza J E R. High stability peanut. 1999, US Patent, 5684232.
[22] Yu S L, Pan L J, Yang Q L, Min P, Ren Z K, Zhang H S. Comparison of the Δ12 fatty acid desaturase gene between high oleic and normal oleic peanut genotypes. J Genet Genome, 2008,3511:679-685.
[23] Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of control the high oleic acid trait in cultivated peanut. Crop Sci, 2009,496:2029.
[24] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
pmid: 14968307
[25] 李拴柱, 宋江春, 王建玉, 张秀阁, 乔建礼, 刘宁. 高油酸花生遗传育种研究进展. 作物杂志, 2017, (3):6-12.
Li S Z, Song J C, Wang J Y, Zhang X G, Qiao J L, Liu N. Advances in genetics and breeding of high oleic acid peanut. Crops, 2017, (3):6-12 (in Chinese with English abstract).
[26] Wang M L, Tonnis B, An Y Q C, Pinnow D, Tishchenko V, Pederson G A. Newly identified natural high oleate mutant from Arachis hypogaea L. subsp. hypogaea. Mol Breed, 2015,359:186.
[27] Nadaf H L, Biradar K, Murthy G S S, Krishnaraj P U, Bhat R S, Pasha M A, Yerimani A S. Novel mutations in oleoyl PC desaturase (AhFAD2B) identified from new high oleic mutants induced by gamma rays in peanut. Crop Sci, 2017,575:2538-2546.
[28] Fang C Q, Wang C T, Wang P W, Tang Y Y, Wang X Z, Cui F G, Yu S L. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. J Oleo Sci, 2012,613:143-148.
[29] 庄伟建. 一种花生高油酸隐性突变系Ahfad2a-1植株. 2016, 中国专利, CN105519432 A.
Zhuang W J. A recessive high oleic peanut mutant Ahfad2a-1. 2016, Chinese Patent, CN105519432A (in Chinese).
[30] 陈四龙. 一种高油酸花生突变基因AhFAD2B-814及应用. 2018, 中国专利, CN108753803 B.
Chen S L. A high oleic peanut gene AhFAD2B-814 and its application. 2018, Chinese Patent, CN108753803 B (in Chinese).
[31] 徐霞. 高油酸花生基因工程育种的研究. 山东大学硕士学位论文, 山东济南, 2006.
Xu X. Studies on the Breeding of High Oleic Peanut by Genetic Engineering. MS Thesis of Shandong University, Jinan, Shandong, China, 2006 (in Chinese with English abstract).
[32] Yin D M, Deng S Z, Zhan K H, Cui D Q. High oleic peanut oils produced by hpRNA mediated genes silencing of oleate desaturase. Plant Mol Biol Rep, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0
[33] 李桂民. 双链RNA基因沉默在高油酸花生育种中的应用. 东北师范大学硕士学位论文, 吉林长春, 2005.
Li G M. Applications of dsRNA Gene Silencing in the Breeding of High Oleic Peanut. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2005 (in Chinese with English abstract).
[34] Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol, 2019,19:24.
doi: 10.1186/s12896-019-0516-8 pmid: 31035982
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[14] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[15] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!