Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1481-1490.doi: 10.3724/SP.J.1006.2021.04214
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Wang(), XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang*()
[1] | 万书波, 封海胜, 张建成. 打造强势花生产业, 参与国际竞争. 花生学报, 2003,32(增刊1):5-10. |
Wan S B, Feng H S, Zhang J C. Development of a strong competitive peanut production in China. J Peanut Sci, 2003,32(S1):5-10 (in Chinese with English abstract). | |
[2] | 张智猛, 戴良香, 李美, 于遒功, 张玉凤, 万书波. 花生种子产业现状与发展对策. 中国农业科技导报, 2013,15(1):30-37. |
Zhang Z M, Dai L X, Li M, Yu Q G, Zhang Y F, Wan S B. Present status and development countermeasures of peanut seed industry. J Agric Sci Technol, 2013,15(1):30-37 (in Chinese with English abstract). | |
[3] | 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 中国油脂, 2020,45(11):116-122. |
Zhang L W, Wang L W. Development status, existing problems and policy recommendation for peanut industry in China. China Oils Fats, 2020,45(11):116-122 (in Chinese with English abstract). | |
[4] | 徐同成, 王文亮, 程安玮, 刘丽娜, 杜方岭. 花生油的营养价值及掺伪检测技术. 粮油加工, 2010, (8):29-32. |
Xu T C, Wang W L, Cheng A W, Liu L N, Du F L. Nutritional value of peanut oil and method for the detection of fake peanut oil. Cereals Oils Proc, 2010, (8):29-32 (in Chinese). | |
[5] | 王传堂, 朱立贵. 高油酸花生. 上海: 上海科技出版社, 2017. pp 27-35. |
Wang C T, Zhu L G. High Oleic Peanut. Shanghai: Shanghai Scientific and Technical Publishers, 2017. pp 27-35(in Chinese). | |
[6] | 李丽, 崔顺立, 穆国俊, 杨鑫雷, 侯名语, 李文平, 刘富强, 刘立峰. 高油酸花生遗传改良研究进展. 中国油料作物学报, 2019,41:986-997. |
Li L, Cui S L, Mu G J, Yang X L, Hou M Y, Li W P, Liu F Q, Liu L F. Research progress of peanut breeding with high oleic acid. Chin J Oil Crop Sci, 2019,41:986-997 (in Chinese with English abstract). | |
[7] | Miller J F, Zimmerman D C, Vick B A. Genetic control of high oleic acid content in sunflower oil. Crop Sci, 1987,275:923. |
[8] | Braddoc J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995,60:489-493. |
[9] | 曹福亮, 王欢利, 郁万文, 程华. 高等植物脂肪酸去饱和酶及编码基因研究进展. 南京林业大学学报(自然科学版), 2012,36(2):125-132. |
Cao F L, Wang H L, Yu W W, Cheng H. Progress of research on fatty acid desaturase and their coding genes in higher plant. J Nanjing For Univ (Nat Sci Edn), 2012,36(2):125-132 (in Chinese with English abstract). | |
[10] |
Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12 desaturase activity. Plant Sci, 1993,91:15-21.
doi: 10.1016/0168-9452(93)90184-2 |
[11] |
Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000,263:796-805.
doi: 10.1007/s004380000244 |
[12] |
Norden A J, Gorbet D W, Knauft D A. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3 |
[13] | 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019,40(5):38-49. |
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agric Univ, 2019,40(5):38-49 (in Chinese with English abstract). | |
[14] | Zhang Y, Ma X, Xie X, Liu Y. CRISPR/Cas9-based genome editing in plants. Prog Mol Biol Trans, 2017,149:133-150. |
[15] |
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014,14:327.
doi: 10.1186/s12870-014-0327-y |
[16] |
Livingstone D M, Birch R G. Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds. Mol Breed, 1999,5:43-51.
doi: 10.1023/A:1009658313170 |
[17] |
Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]: II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000,263:806-811.
doi: 10.1007/s004380000243 |
[18] | Barkley N A, Chamberlin K D C, Wang M L, Pittman R N. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2010,253:541-548. |
[19] | Chen Z, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high oleate trait selection. Plant Mol Biol Rep, 2010,283:542-548. |
[20] | Moore K M. High Oleic Acid Peanut, 1999, US Patent, 5945578. |
[21] | Horn M E, Eikenberry E J, Lanuza J E R. High stability peanut. 1999, US Patent, 5684232. |
[22] | Yu S L, Pan L J, Yang Q L, Min P, Ren Z K, Zhang H S. Comparison of the Δ12 fatty acid desaturase gene between high oleic and normal oleic peanut genotypes. J Genet Genome, 2008,3511:679-685. |
[23] | Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of control the high oleic acid trait in cultivated peanut. Crop Sci, 2009,496:2029. |
[24] |
Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
pmid: 14968307 |
[25] | 李拴柱, 宋江春, 王建玉, 张秀阁, 乔建礼, 刘宁. 高油酸花生遗传育种研究进展. 作物杂志, 2017, (3):6-12. |
Li S Z, Song J C, Wang J Y, Zhang X G, Qiao J L, Liu N. Advances in genetics and breeding of high oleic acid peanut. Crops, 2017, (3):6-12 (in Chinese with English abstract). | |
[26] | Wang M L, Tonnis B, An Y Q C, Pinnow D, Tishchenko V, Pederson G A. Newly identified natural high oleate mutant from Arachis hypogaea L. subsp. hypogaea. Mol Breed, 2015,359:186. |
[27] | Nadaf H L, Biradar K, Murthy G S S, Krishnaraj P U, Bhat R S, Pasha M A, Yerimani A S. Novel mutations in oleoyl PC desaturase (AhFAD2B) identified from new high oleic mutants induced by gamma rays in peanut. Crop Sci, 2017,575:2538-2546. |
[28] | Fang C Q, Wang C T, Wang P W, Tang Y Y, Wang X Z, Cui F G, Yu S L. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. J Oleo Sci, 2012,613:143-148. |
[29] | 庄伟建. 一种花生高油酸隐性突变系Ahfad2a-1植株. 2016, 中国专利, CN105519432 A. |
Zhuang W J. A recessive high oleic peanut mutant Ahfad2a-1. 2016, Chinese Patent, CN105519432A (in Chinese). | |
[30] | 陈四龙. 一种高油酸花生突变基因AhFAD2B-814及应用. 2018, 中国专利, CN108753803 B. |
Chen S L. A high oleic peanut gene AhFAD2B-814 and its application. 2018, Chinese Patent, CN108753803 B (in Chinese). | |
[31] | 徐霞. 高油酸花生基因工程育种的研究. 山东大学硕士学位论文, 山东济南, 2006. |
Xu X. Studies on the Breeding of High Oleic Peanut by Genetic Engineering. MS Thesis of Shandong University, Jinan, Shandong, China, 2006 (in Chinese with English abstract). | |
[32] |
Yin D M, Deng S Z, Zhan K H, Cui D Q. High oleic peanut oils produced by hpRNA mediated genes silencing of oleate desaturase. Plant Mol Biol Rep, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0 |
[33] | 李桂民. 双链RNA基因沉默在高油酸花生育种中的应用. 东北师范大学硕士学位论文, 吉林长春, 2005. |
Li G M. Applications of dsRNA Gene Silencing in the Breeding of High Oleic Peanut. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2005 (in Chinese with English abstract). | |
[34] |
Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol, 2019,19:24.
doi: 10.1186/s12896-019-0516-8 pmid: 31035982 |
[1] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[4] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[5] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[6] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[7] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[8] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[9] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[10] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[11] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[12] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[13] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
[14] | HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108. |
[15] | XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137. |
|