Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1450-1459.doi: 10.3724/SP.J.1006.2021.04213

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and index screening of soft rot resistance at harvest stage in sweetpotato

ZHANG Si-Meng(), NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan*()   

  1. College of Agriculture and Food Science, Zhejiang Agriculture and Forest University/Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Hangzhou 311300, Zhejiang, China
  • Received:2020-09-18 Accepted:2020-12-01 Online:2021-08-12 Published:2021-01-06
  • Contact: LU Guo-Quan E-mail:1826213445@qq.com;lugq10@zju.edu.cn
  • Supported by:
    China Agriculture Research System(CARS-10-B19);National Natural Science Foundation of China(31671750);Major Scientific and Technological Sub-topics of Zhejiang for Agricultural (Food) New Varieties Selection and Breeding(2016C02050-7-5)

Abstract:

Soft rot is one of the most destructive diseases during sweetpotato storage. Cell walls were destroyed and soft rot was caused by Rhizopus Stolonifer, which invaded from wounds and propagated with nutrients from wounds. Six varieties of sweetpotato roots in different harvest period were used as the experimental material to identify the resistance index to soft rot, through the inoculation with sweetpotato chips. Physiological indexes including texture of roots (hardness, adhesion, adhesion force, cohesiveness, elasticity, chewiness, and glue viscosity), nutrients (dry matter content, starch, fructose, glucose, sucrose, crude protein and crude fiber), resistance enzyme activity (POD, PPO, PAL) were investigated in this study. Their correlation analysis, grey correlation analysis of each index and subordinate function analysis were applied in screening and comprehensive evaluation of soft rot resistance. The soft rot resistance of sweetpotato roots was graded based on the disease spot diameter. The index and weight of soft rot resistance were conducted by correlation analysis and grey correlation analysis of disease spot diameter and index values. Comprehensive evaluation value (D-value) of six varieties of sweetpotato roots at different harvest stages were calculated using the membership function analysis. The reliability of indicators selection was verified through correlation analysis of D-value based on the disease spot diameter. Soft rot resistance of sweetpotato was high in 90 day at harvest stage, moderate resistance in 120, 135, 150 day of harvest stage, and hypersensitivity and susceptibility in 105 day of harvest stage. Seven indexes, including fructose content selection, chewiness, cohesiveness, elasticity, protein content, POD and PAL enzyme activity, were filtered out to estimate the resistance of soft rot in sweetpotato. These results could provide the germplasm information for selection and breeding of new sweetpotato varieties resistant to soft rot and could serve as a basis for subsequent assessment of sweetpotato resistant to soft rot and their soft rot resistance mechanism.

Key words: sweetpotato, soft rot resistance, harvest stage, appraisal indicators

Table 1

Sample numbers of sweetpotato"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 1-1 1-2 1-3 1-4 1-5
烟薯25 Yanshu 25 2-1 2-2 2-3 2-4 2-5
济薯25 Jishu 25 3-1 3-2 3-3 3-4 3-5
浙薯13 Zheshu 13 4-1 4-2 4-3 4-4 4-5
心香 Xinxiang 5-1 5-2 5-3 5-4 5-5
漯紫薯4号 Luozishu 4 6-1 6-2 6-3 6-4 6-5

Fig. 1

Incidence of Rhizopus stolonifera of sweetpotato tubers after 21 hours at different harvest stages A: harvest in 90 days; B: harvest in 105 days; C: harvest in 120 days; D: harvest in 135 days; E: harvest in 150 days."

Table 2

Spot diameters of root soft rot disease at different harvest stages in sweetpotato (cm)"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 0.82±0.12 d 2.17±0.06 a 1.622±0.04 b 1.79±0.16 b 1.37±0.22 c
烟薯25 Yanshu 25 0.90±0.06 d 3.58±0.05 a 1.07±0.03 d 1.74±0.28 b 1.41±0.13 c
济薯25 Jishu 25 0.59±0.05 c 2.62±0.14 a 1.31±0.44 b 1.29±0.05 b 1.54±0.11 b
浙薯13 Zheshu 13 0.59±0.02 e 2.79±0.36 a 1.42±0.11 c 1.04±0.14 d 1.84±0.17 b
心香 Xinxiang 0.83±0.01 d 3.17±0.17 a 2.82±0.21 b 1.10±0.10 d 2.18±0.17 c
漯紫薯4号 Luozishu 4 0.52±0.02 c 1.64±0.07 a 1.50±0.15 a 0.69±0.04 c 1.31±0.14 b

Table 3

Disease index and resistance evaluation of roots soft rot at different harvest stages in sweetpotato"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 25.00 R 66.67 S 55.56 MR 52.78 MR 50.00 MR
烟薯25 Yanshu 25 25.00 R 97.22 HS 41.67 MR 52.78 MR 50.00 MR
济薯25 Jishu 25 25.00 R 66.67 S 47.22 MR 47.22 MR 50.00MR
浙薯13 Zheshu 13 25.00 R 83.33 HS 47.22 MR 50.00 MR 55.56 MR
心香 Xinxiang 25.00 R 94.44 HS 77.78 S 44.44 MR 55.56 MR
漯紫薯4号 Luozishu 4 25.00 R 55.56 MR 55.56 MR 25.00 R 50.00 MR

Table 4

Measured values of soft rot related indexes of sweetpotato samples"

样品编号
Sample number
内聚性
Cohesiveness
(ratio)
弹性
Springiness
(mm)
咀嚼性
Chewiness
(N)
果糖
Fructose content
(mg g-1)
粗蛋白
Crude protein content (%)
过氧化物酶
POD activity
(U)
苯丙氨酸解氨酶活性
PAL activity (U)
1-1 0.23±0.00 a 6.31±0.78 ab 210.67±7.10 a 1.36±0.15 d 0.95±0.05 a 7.54±0.24 c 95.00±5.00 a
1-2 0.20±0.01 ab 5.83±0.25 b 165.18±6.28 b 4.64±0.37 a 0.55±0.02 c 2.45±0.20 e 35.33±1.53 c
1-3 0.21±0.00 a 5.81±0.17 b 158.95±2.34 b 4.34±0.28 a 0.62±0.01 b 3.56±0.42 d 17.00±1.00 d
1-4 0.18±0.02 b 6.75±0.25 a 178.27±9.20 b 2.52±0.30 b 0.45±0.02 d 10.55±0.43 b 33.67±3.06 c
1-5 0.21±0.02 a 5.92±0.32 b 176.68±17.80 b 1.87±0.20 c 0.90±0.03 a 16.49±0.49 a 45.00±3.61 b
2-1 0.23±0.01 ab 6.51±0.40 a 126.80±4.36 b 15.34±0.85 c 0.71±0.02 a 10.56±0.37 a 86.33±1.15 a
2-2 0.19±0.01 c 5.43±0.69 b 92.70±1.52 d 19.09±0.08 ab 0.54±0.01 c 4.63±0.44 d 25.33±3.51 b
2-3 0.24±0.01 a 6.71±0.40 a 138.82±5.38 a 19.52±0.13 a 0.45±0.01 d 6.49±1.20 c 25.33±1.53 b
2-4 0.21±0.01 bc 6.68±0.04 a 126.11±10.85 b 16.46±1.30 c 0.66±0.03 b 9.57±0.43 ab 22.33±3.21 b
2-5 0.20±0.01 c 6.35±0.32 a 107.98±4.93 c 17.9±0.40 b 0.43±0.02 d 8.46±0.32 b 8.00±1.00 c
3-1 0.21±0.03 a 6.31±0.07 b 126.14±3.82 b 1.49±0.23 bc 0.57±0.02 d 15.13±0.53 b 73.67±2.52 a
3-2 0.16±0.00 b 5.72±0.25 c 118.63±4.92 b 1.97±0.14 bc 0.44±0.03 e 3.33±0.05 c 9.33±0.58 c
3-3 0.16±0.02 b 6.52±0.14 a 150.22±8.80 a 2.16±0.31 b 0.87±0.01 a 5.42±0.42 c 25.67±2.08 b
3-4 0.14±0.01 b 6.07±0.33 bc 116.60±2.94 b 1.17±0.04 c 0.81±0.01 b 5.66±0.44 c 26.33±2.31 b
3-5 0.13±0.01 b 6.83±0.39 ab 120.41±2.01 b 10.33±0.96 a 0.75±0.01 c 24.39±3.52 a 12.00±1.00 c
4-1 0.28±0.09 a 6.86±0.18 a 218.32±3.87 a 1.80±0.14 d 0.95±0.02 a 9.57±0.92 a 89.00±3.00 a
4-2 0.18±0.00 ab 6.02±0.18 b 135.65±6.94 c 2.65±0.17 c 0.77±0.01 b 2.69±0.79 d 16.33±2.52 bc
4-3 0.20±0.04 ab 5.90±0.34 b 126.72±3.95 d 5.22±0.42 a 0.66±0.09 c 7.47±0.18 b 18.67±3.06 c
4-4 0.17±0.02 b 6.10±0.11 b 125.59±3.53 d 4.08±0.53 b 0.99±0.01 d 5.53±0.49 c 21.67±1.53 b
4-5 0.17±0.01 b 6.71±0.36 a 169.24±4.96 b 1.41±0.14 d 0.40±0.01 d 10.23±0.64 a 17.67±1.15 bc
5-1 0.18±0.01 a 5.49±0.27 a 86.51±2.96 c 1.78±0.11 c 1.00±0.02 a 49.04±0.44 a 68.00±2.65 a
5-2 0.16±0.01 b 5.08±0.56 a 73.64±4.39 d 6.80±0.59 b 0.54±0.01 c 5.38±0.33 d 36.67±3.06 b
5-3 0.19±0.01 a 5.93±0.68 a 103.35±4.52 b 10.03±0.60 a 0.55±0.01 c 6.37±0.37 d 25.33±3.06 c
5-4 0.17±0.01 ab 5.97±0.33 a 106.20±7.81 b 6.03±0.61 b 0.39±0.04 d 8.53±0.97 c 30.67±3.79 c
5-5 0.16±0.01 b 5.74±0.24 a 117.08±3.00 a 6.14±0.65 b 0.76±0.10 b 14.48±0.70 b 13.00±1.73 d
6-1 0.20±0.02 a 7.14±0.68 a 137.18±3.47 a 3.06±0.23 d 0.83±0.01 b 2.81±0.11 d 75.33±4.16 a
6-2 0.17±0.02 a 5.51±0.28 c 97.46±0.35 c 6.83±0.46 b 0.44±0.02 d 8.36±0.41 b 21.00±2.00 c
6-3 0.20±0.01 a 6.51±0.21 ab 133.85±4.09 a 7.63±0.20 a 0.54±0.02 c 2.09±0.18 e 20.33±4.04 c
6-4 0.18±0.01 a 5.99±0.14 bc 115.39±2.91 b 7.53±0.35 c 0.85±0.06 b 4.84±0.18 c 55.67±1.53 b
6-5 0.19±0.03 a 5.80±0.28 c 109.29±7.51 b 4.98±0.46 c 0.97±0.08 a 8.99±0.28 a 11.33±2.08 d

Table 5

Grey correlation degree and sequence of spot diameter and indexes of soft rot disease in sweetpotato"

序列
Indicator
测定指标
Index
关联度γ
Correlation degree γ
权重
Weight
位次
Rank
X4 果糖 Fructose 0.5145 0.1668 1
X6 过氧化物酶 Peroxidase 0.4996 0.1620 2
X3 咀嚼性 Chewiness 0.4566 0.1480 3
X8 苯丙氨酸解氨酶 L-phenylalanin ammo-nialyase 0.4144 0.1344 5
X1 内聚性 Cohesiveness 0.4248 0.1377 4
X2 弹性 Springiness 0.4069 0.1319 6
X5 粗蛋白 Crude protein 0.3675 0.1192 7

Table 6

Membership function values and weighted composite values of each indicator"

样品编号
Sample number
内聚性
Cohesiveness
(ratio)
弹性
Springiness
(mm)
咀嚼性
Chewiness
(N)
果糖
Fructose content
(mg g-1)
粗蛋白
Crude protein content (%)
过氧化物酶
POD activity
(U)
苯丙氨酸解氨酶活性
PAL activity (U)
加权综合值
Weighted
composite value
1-1 0.09 0.40 0.05 0.12 0.08 0.88 0.00 0.23
1-2 0.32 0.64 0.37 0.33 0.73 0.99 0.69 0.55
1-3 0.21 0.65 0.41 0.30 0.62 0.97 0.90 0.55
1-4 0.53 0.19 0.28 0.20 0.91 0.82 0.70 0.49
1-5 0.24 0.59 0.29 0.12 0.15 0.69 0.57 0.37
2-1 0.09 0.31 0.63 0.83 0.47 0.82 0.10 0.48
2-2 0.45 0.83 0.87 0.92 0.76 0.95 0.80 0.81
2-3 0.00 0.21 0.55 1.00 0.90 0.91 0.80 0.64
2-4 0.27 0.22 0.64 0.80 0.55 0.84 0.84 0.61
2-5 0.32 0.38 0.76 0.95 0.94 0.86 1.00 0.75
3-1 0.25 0.40 0.64 0.08 0.70 0.72 0.25 0.42
3-2 0.78 0.69 0.69 0.11 0.92 0.97 0.98 0.71
3-3 0.71 0.30 0.47 0.12 0.21 0.93 0.80 0.50
3-4 0.91 0.52 0.70 0.05 0.31 0.92 0.79 0.59
3-5 1.00 0.15 0.68 0.42 0.40 0.53 0.95 0.60
4-1 0.09 0.13 0.00 0.09 0.07 0.84 0.07 0.19
4-2 0.51 0.55 0.57 0.14 0.37 0.99 0.90 0.57
4-3 0.34 0.60 0.63 0.31 0.56 0.89 0.88 0.58
4-4 0.64 0.51 0.64 0.25 0.01 0.93 0.84 0.54
4-5 0.64 0.21 0.34 0.06 0.98 0.83 0.89 0.54
5-1 0.50 0.80 0.91 0.10 0.00 0.00 0.31 0.36
5-2 0.76 1.00 1.00 0.31 0.75 0.93 0.67 0.77
5-3 0.46 0.59 0.79 0.52 0.73 0.91 0.80 0.68
5-4 0.61 0.57 0.77 0.31 1.00 0.86 0.74 0.68
5-5 0.75 0.68 0.70 0.00 0.39 0.74 0.94 0.63
6-1 0.37 0.00 0.56 0.20 0.27 0.98 0.23 0.37
6-2 0.62 0.79 0.84 0.52 0.92 0.87 0.85 0.73
6-3 0.38 0.31 0.58 0.57 0.75 1.00 0.86 0.60
6-4 0.58 0.56 0.71 0.61 0.24 0.94 0.45 0.56
6-5 0.44 0.65 0.75 0.34 0.04 0.85 0.96 0.56
[1] Laryea D, Koomson D, Oduro I, Carey E. Evaluation of 10 genotypes of sweetpotato for fries. Food Sci Nutr, 2019,7:589-598.
doi: 10.1002/fsn3.2019.7.issue-2
[2] Flis B, Tatarowska B, Milczarek D, Plich J. Effect of location on starch content and tuber texture characteristics in potato breeding lines and cultivars. Acta Agric Scand Section B: Soil Plant Sci, 2017,67:453-461.
[3] Sato A, Truong V D, Johanningsmeier S D, Reynolds R, Pecota K V, Yencho C C. Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed French fries. J Food Sci, 2018,83:60-73.
doi: 10.1111/1750-3841.13978
[4] Clark C A, Silva W L D, Ramón A A, Main J L, Smith J. Incidence of end rots and internal necrosis in sweetpotato is affected by cultivar, curing, and ethephon defoliation. Horttechnology, 2013,23:886-897.
doi: 10.21273/HORTTECH.23.6.886
[5] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. pp 1-5.
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. pp 1-5(in Chinese).
[6] Ray R C, Ravi V, Hegde V, Korada R R, Tomlins K. Post harvest handling, storage methods, pest and diseases of sweet potato. Int J Innovat Hortic, 2015,4:1-10.
[7] 王亮, 闫根柱, 赵迎丽, 王春生. 甘薯贮藏期主要病害及其防治方法. 中国果菜, 2009, (8):22.
Wang L, Yan G Z, Zhao Y L, Wang C S. The main diseases of sweet potato during storage and their control methods. China Fruits Veget, 2009, (8):22 (in Chinese with English abstract).
[8] Tang B, Pan H B, Tang W J, Zhang Q Q, Ding L X, Zhang F Q. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biomass Bioenergy, 2011,36:366-372.
doi: 10.1016/j.biombioe.2011.11.003
[9] Lewthwaite S L, Wright P J, Triggs C M. Sweetpotato cultivar susceptibility to postharvest soft rot caused by Rhizopus stolonifer. New Zealand Plant Prot, 2013,66:223-228.
[10] Edmunds B A, Clark C A, Villordon A Q, Holmes G J. Relationships of preharvest weather conditions and soil factors to susceptibility of sweetpotato to postharvest decay caused by Rhizopus stolonifer and Dickeya dadantii. Plant Dis, 2015,99:848-857.
doi: 10.1094/PDIS-11-14-1143-RE pmid: 30699536
[11] Holmes G J, Stange R R. Influence of wound type and storage duration on susceptibility of sweetpotatoes to Rhizopus soft rot. Plant Dis, 2002,86:345-348.
doi: 10.1094/PDIS.2002.86.4.345
[12] 杨冬静, 徐振, 赵永强, 张成玲, 孙厚俊, 谢逸萍. 甘薯软腐病抗性鉴定方法研究及其对甘薯种质资源抗性评价. 华北农学报, 2014,29(增刊1):54-56.
Yang D J, Xu Z, Zhao Y Q, Zhang C L, Sun H J, Xie Y P. Research on the identification method of sweet potato soft rot resistance and its resistance evaluation to sweet potato germplasm resources. Acta Agric Boreali-Sin, 2014,29(S1):54-56 (in Chinese with English abstract).
[13] Scruggs A C, Quesada-Ocampo L M. Cultural, chemical, and alternative control strategies for Rhizopus soft rot of sweetpotato. Plant Dis, 2016,100:1532-1540.
doi: 10.1094/PDIS-01-16-0051-RE pmid: 30686213
[14] Edmunds B A, Holmes G J. Evaluation of alternative decay control products for control of postharvest Rhizopus soft rot of sweetpotatoes. Plant Health Prog, 2009,10:26.
doi: 10.1094/PHP-2009-0206-01-RS
[15] Nafady N A, Alamri S A M, Hassan E A, Hashem M, Mostafa Y S, Abo-Elyousr K A M. Application of ZnO-nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life. Folia Hortic, 2019,31:319-329.
doi: 10.2478/fhort-2019-0025
[16] 崔杰, 党耀国, 刘思峰. 基于灰色关联度求解指标权重的改进方法. 中国管理科学, 2008,16(5):141-145.
Cui J, Dang Y G, Liu S F. An improved method for solving index weights based on grey incidence. China Manage Sci, 2008,16(5):141-145 (in Chinese with English abstract).
[17] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007,40:2452-2459.
Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Grey Correlation analysis of agronomic and physiological and biochemical traits related to drought resistance in wheat. Sci Agric Sin, 2007,40:2452-2459 (in Chinese with English abstract).
[18] 张文英, 柳斌辉, 杨国航, 彭海城, 栗雨勤. 玉米不同时期抗旱性鉴定指标的灰色关联度与聚类分析. 华北农学报, 2008,23(增刊1):96-98.
Zhang W Y, Liu B H, Yang G H, Peng H C, Li Y Q. Grey correlation degree and cluster analysis of drought resistance identification indicators in different periods of maize. Acta Agric Boreali-Sin, 2008,23(S1):96-98 (in Chinese with English abstract).
[19] Alfaro-Sifuentes L, Juan M, Meca D E, Elorrieta M A, Valenzuela J L. Effectiveness of chemical and thermal treatments on control Rhizopus stolonifer fruit infection comparing tomato cultivars with different sensitivities to cracking. Int J Environ Res Public Health, 2019,16:2754.
doi: 10.3390/ijerph16152754
[20] Alessandrini L, Balestra F, Romani S, Rocculi P, Rosa M D. Physicochemical and sensory properties of fresh potato-based pasta (Gnocchi). J Food Sci, 2010,75:542-547.
[21] 陆国权, 李秀玲, 丁守仁. 盐酸水解DNS比色法快速测定甘薯淀粉含量的标准方法研究. 中国粮油学报, 2002,17(1):25-28.
Lu G Q, Li X L, Ding S R. Hydrochloric acid hydrolysis DNS colorimetric method to quickly determine the standard method of sweet potato starch content. J Chin Cereals Oils Assoc, 2002,17(1):25-28 (in Chinese with English abstract).
[22] 李燕平. 高效液相色谱-示差折光检测法测定茶叶中果糖、葡萄糖、蔗糖的含量. 广东化工, 2016, (7):187-188.
Li Y P. Determination of fructose, glucose and sucrose in tea by high performance liquid chromatography-refractive index detection method. Guangdong Chem Ind, 2016, (7):187-188 (in Chinese with English abstract).
[23] 陈智慧, 史梅, 王秋香, 张晓红. 用凯氏定氮法测定食品中的蛋白质含量. 新疆畜牧业, 2008, (5):22-24.
Chen Z H, Shi M, Wang Q X, Zhang X H. Determination of protein content in food by Kjeldahl method. Xinjiang Animal Husb, 2008, (5):22-24 (in Chinese with English abstract).
[24] Rao L. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol, 1996,135:1441-1455.
doi: 10.1083/jcb.135.6.1441
[25] Pizzocaro F, Torreggiani D, Gilardi G. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. J Food Proc Preserv, 2010,17:21-30.
doi: 10.1111/jfpp.1993.17.issue-1
[26] Lister C E, Lancaster J E, Walker J R L. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric, 1996,71:313-320.
doi: 10.1002/(ISSN)1097-0010
[27] 贾小平, 袁玺垒, 陆平, 范丙友, 黄华, 戴凌峰. 中国71个谷子种质资源的灰色关联度分析及综合评价. 种子, 2017,36(9):63-66.
Jia X P, Yuan X L, Lu P, Fan B Y, Huang H, Dai L F. Grey correlation analysis and comprehensive evaluation of 71 millet germplasm resources in China. Seeds, 2017,36(9):63-66 (in Chinese with English abstract).
[28] 武修英, 陆漱韵, 李惟基. 一种快速、准确鉴定甘薯抗线虫性糠腐病的方法. 作物学报, 1992,18:317-319.
Wu X Y, Lu S Y, Li W J. A rapid and accurate method for identifying resistance of sweet potato to nematode bran rot. Acta Agron Sin, 1992,18:317-319 (in Chinese with English abstract).
[29] 张志德, 朱俊光. 粉锈宁防治甘薯黑斑病初步研究. 植物保护学报, 1991,18:305-310.
Zhang Z D, Zhu J G. A preliminary study on the control of Ceratocystis fimbriata of sweetpotato by triadimefon. Acta Plant Prot, 1991,18:305-310 (in Chinese with English abstract).
[30] 黄立飞, 陈景益, 房伯平, 罗忠霞, 张雄坚, 王章英. 甘薯茎腐病菌的遗传多样性及致病力差异分析. 植物保护学报, 2018,45:1227-1234.
Huang L F, Chen J Y, Fang B P, Luo Z X, Zhang X J, Wang Z Y. Analysis of genetic diversity and pathogenicity of sweet potato stem rot pathogens. Acta Phytophy Sin, 2018,45:1227-1234 (in Chinese with English abstract).
[31] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民. 普通菜豆品种苗期抗旱性鉴定. 作物学报, 2015,41:963-971.
Li L, Wang L F, Wu J, Jing R L, Wang S M. Identification of drought resistance of common bean varieties at seedling stage. Acta Agron Sin, 2015,41:963-971 (in Chinese with English abstract).
[32] 王正航, 武仙山, 昌小平, 李润植, 景蕊莲. 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析. 作物学报, 2010,36:217-227.
Wang Z H, Wu X S, Chang X P, Li R Z, Jing R L. Grey correlation analysis of wheat flag leaf chlorophyll content, fluorescence kinetic parameters and yield. Acta Agron Sin, 2010,36:217-227 (in Chinese with English abstract).
[33] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018,44:1237-1247.
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Salt tolerance identification and index screening of sweet potato seedlings. Acta Agron Sin, 2018,44:1237-1247 (in Chinese with English abstract)
[34] 谈锋, 张启堂, 陈京, 李坤培. 甘薯品种抗旱适应性的数量分析. 作物学报, 1991,17:394-398.
Tan F, Zhang Q T, Chen J, Li K P. Quantitative analysis of drought resistance adaptability of sweet potato varieties. Acta Agron Sin, 1991,17:394-398 (in Chinese with English abstract).
[35] 李玲, 徐舒, 曹如霞, 陈玲玲, 崔鹏, 吕尊富, 陆国权. 基于PCA-Entropy TOPSIS的甘薯品种块根质构品质评价. 中国农业科学, 2020,53:2161-2170.
Li L, Xu S, Cao R X, Chen L L, Cui P, Lyu Z F, Lyu G Q. Evaluation of root texture quality of sweet potato varieties based on PCA-Entropy TOPSIS. Sci Agric Sin, 2020,53:2161-2170 (in Chinese with English abstract).
[36] Gill P, Kaur G, Saxena V K. Genetic studies of some biochemical compounds and their relationship with charcoal rot resistance in maize (Zea mays L.). J Res (India), 2005,42:1-9.
[37] 蔡复礼. 果糖的应用特性及其分离. 食品工业科技, 1996, (2):38-40.
Cai F L. Application characteristics and separation of fructose. Food Ind Sci Technol, 1996, (2):38-40 (in Chinese with English abstract).
[38] Muhanna M, Rees D. The role of root sugar content on the susceptibility of sweetpotato cultivars to soft rot. Afr Crop Sci J, 2004,12:295-303.
[39] Scott A Y, Ailan G, James A G, Frank F W, Jan E L. Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol, 1995,107:1333-1341.
doi: 10.1104/pp.107.4.1333
[40] 孙万春, 梁永超, 杨艳芳. 硅和接种黄瓜炭疽菌对黄瓜过氧化物酶活性的影响及其与抗病性的关系. 中国农业科学, 2002,35:1560-1564.
[41] Sun W C, Liang Y C, Yang Y F. The effect of silicon and inoculation with cucumber Colletotrichum on peroxidase activity of cucumber and its relationship with disease resistance. Sci Agric Sin, 2002,35:1560-1564 (in Chinese with English abstract).
[42] 刘太国, 石延霞, 文景芝, 李永镐. 水杨酸诱导烟草对TMV的抗性和PAL活性变化研究. 植物病理学报, 2003,33:190-191.
Liu T G, Shi Y X, Wen J Z, Li Y G. Study on salicylic acid-induced tobacco resistance to TMV and PAL activity changes. Acta Phytopathol Sin, 2003,33:190-191 (in Chinese with English abstract).
[43] 赵亚婷, 朱璇, 马玄, 郭杨美娟. 采前水杨酸处理对杏果实抗病性及苯丙烷代谢的诱导. 食品科学, 2015,36(2):216-220.
Zhao Y T, Zhu X, Ma X, Guo Y M J. Induction of disease resistance and phenylpropane metabolism of apricot fruit by salicylic acid treatment before harvest. Food Sci, 2015,36(2):216-220 (in Chinese with English abstract).
[1] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[2] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[3] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[4] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[5] Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Shun-Xu DONG,Wen-Xue DUAN,Li-Ming ZHANG. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars [J]. Acta Agronomica Sinica, 2019, 45(3): 419-430.
[6] ZHANG Hai-Yan,DUAN Wen-Xue,XIE Bei-Tao,DONG Shun-Xu,WANG Bao-Qing,SHI Chun-Yu,ZHANG Li-Ming. Effects of Drought Stress at Different Growth Stages on Endogenous Hormones and Its Relationship with Storage Root Yield in Sweetpotato [J]. Acta Agron Sin, 2018, 44(01): 126-136.
[7] WANG Shun-Yi,LI Huan,LIU Qing,SHI Yan-Xi*. Effect of Potassium Application on Root Grow and Yield of Sweet Potato and Its Physiological Mechanism [J]. Acta Agron Sin, 2017, 43(07): 1057-1066.
[8] SHI Xuan,WANG Ru-Yuan,TANG Jun,LI Zong-Yun,LUO Yong-Hai. Analysis of Interspecific SNPs in Sweetpotato Using a Reduced-Representation Genotyping Technology [J]. Acta Agron Sin, 2016, 42(05): 641-647.
[9] WU Chun-Hong,LIU Qing,KONG Fan-Mei,LI Huan,SHI Yan-Xi. Effects of Nitrogen Application Rates on Root Yield and Nitrogen Utilization in Different Purple Sweetpotato Varieties [J]. Acta Agron Sin, 2016, 42(01): 113-122.
[10] ZHANG Qiu-Ying,LI Yan-Sheng,LIU Chang-Kai,TIAN Bo-Wen,TU Bing-Jie,MAO Jian-Wei. Key Components of Eating Quality and their Dynamic Accumulation in Vegetable Soybean Varieties [Glycine max (L.) Merr.] [J]. Acta Agron Sin, 2015, 41(11): 1692-1700.
[11] NING Yun-Wang,MA Hong-Bo,ZHANG Hui,WANG Ji-Dong,XU Xian-Ju,ZHANG Yong-Chun*. Response of SweetpotatoinSource-Sink Relationship Establishment, Expanding, and Balance to Nitrogen Application Rates [J]. Acta Agron Sin, 2015, 41(03): 432-439.
[12] LIU Hong-Juan,SHI Chun-Yu,CHAI Sha-Sha. Difference and Related Reason for Assimilate Distribution of Sweetpotato Varieties with Different Tuber Root Yields [J]. Acta Agron Sin, 2015, 41(03): 440-447.
[13] TANG Zhong-Hou,ZHANG Yun-Gang,WEI Meng,CHEN Xiao-Guang,SHI Xin-Min,ZHANG Ai-Jun,LI Hong-Min,DING Yan-Feng. Screening and Evaluation Indicators for Low Potassium-Tolerant and Potassium Efficient Sweetpotato (Ipomoea batatas L.) Varieties (Lines) [J]. Acta Agron Sin, 2014, 40(03): 542-549.
[14] SUN Jian, YUE Rui-Xue, CHOU Fu-Xiang, XU Fei, ZHU Gong. Relationship among Amylose Content, Starch Pasting and Ethanol Fermentation in Sweetpotato Varieties for Starch Use [J]. Acta Agron Sin, 2012, 38(03): 479-486.
[15] LIU Hong-Juan, LI Zuo-Mei, SHI Chun-Yu, ZHANG Li-Ming. Physiological Basis of Improving Soluble Sugar Content in Sweetpotato for Table Use by Humic Acid Application [J]. Acta Agron Sin, 2011, 37(04): 711-716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!