Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2199-2207.doi: 10.3724/SP.J.1006.2021.03049

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

An growing-period indicator of maize cultivars for mechanical kernel harvest

LI Lu-Lu1(), MING Bo1, CHU Zhen-Dong2, ZHANG Wan-Xu2, GAO Shang1, WANG Yi-Zhou1, HOU Liang-Yu1, ZHOU Xian-Lin1, XIE Rui-Zhi1, WANG Ke-Ru1, HOU Peng1, LI Shao-Kun1,*()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Agricultural College, Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2020-08-24 Accepted:2021-03-19 Online:2021-11-12 Published:2021-08-31
  • Contact: LI Shao-Kun E-mail:lilulu19910818@163.com;lishaokun@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300110);National Natural Science Foundation of China(31971849);China Agriculture Research System(CARS-02-25);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Abstract:

The high kernel moisture of maize (Zea mays L.) at harvest stage limits the field-application of mechanical kernel harvesting. The breeding and selection of fast dry-down cultivars is the key to solve this problem. However, there is still a lack of such indicators for evaluating the kernel dry-down rate in China. To explore the indicators, the crop growth and the kernel dry-down of two cultivars, Xianyu 335 and Zhengdan 958, were investigated across various maize belts in China from 2014 to 2018. Between the two cultivars, there were significant varietal differences in thermal times (TT) at the stages of planting-maturity (P-M), planting-25% moisture (P-25%), and maturity-25% moisture (M-25%), respectively. The TTP-M on average were 3039°C d (2752-3249°C d) for Xianyu 335 and 3090°C d (2750-3546°C d) for Zhengdan 958, with a difference value of 51°C d, and the corresponding coefficient of variations (CV) of TTP-M were 4% and 6%, respectively. The TTP-25% on average was 3097°C d (2920-3392°C d) for Xianyu 335 and 3309°C d (2980-3613°C d) for Zhengdan 958, with a larger difference value of 212°C d, while their CV were 4% and 5%. In several, the TTM-25% for Xianyu 335 and Zhengdan 958 were 66°C d (0-287°C d) and 166°C d (36-338°C d) with the CV of 131% and 54%. On account of its better reflection of kernel dry-down rate among cultivars, the TTP-25% could be considered as the growing period indicator for the breeding and selection of cultivars fitting to present mechanical kernel harvesting. In addition, this indicator might vary with region, year, or planting date, the same field and year were recommended to ensure a consistent environmental condition for measuring it. Conclusively, a new indicator (TTP-25%) for breeding and selection of fast dry-down hybrids was proposed, which potentially prompting maize kernel harvesting in China.

Key words: maize, kernel moisture, dry-down rate, thermal time, mechanical kernel harvest

Table 1

Dates of planting, silking, physiological maturity, 25% moisture content, and the last sampling at various experimental sites (month/day)"

地点
Site
年份Year 播种日期
Planting date
先玉335 Xianyu 335 郑单958 Zhengdan 958 取样结束日期
Last sampling date
吐丝
Silking
生理成熟
Maturity
25%含水率
25% moisture
吐丝
Silking
生理成熟
Maturity
25%含水率
25% moisture
北京
Beijing
2014 6/1 7/27 9/24 9/26 8/1 9/27 10/12 11/2
2017 6/18 8/10 10/20 11/2 11/22
2018 5/15 7/10 9/3 9/13 7/12 9/11 9/25 10/22
2018 6/7 8/3 10/13 10/7 7/31 10/10 10/17 10/22
河南新乡
Xinxiang, Henan
2015 5/31 7/28 10/2 10/3 7/28 10/3 10/12 11/14
2015 6/11 8/5 10/9 10/10 8/4 10/9 10/19 11/14
2015 6/16 8/9 10/14 10/12 8/9 10/14 10/18 11/14
2015 6/20 8/13 10/18 10/17 8/12 10/18 10/20 11/14
2015 6/30 8/22 10/24 11/11 8/23 10/21 # 11/14
2016 5/29 7/27 9/21 9/22 7/28 9/26 10/3 10/17
2016 6/4 7/30 9/26 9/27 7/31 9/28 10/13 10/17
2016 6/11 8/3 9/30 9/28 8/3 10/2 10/20 10/25
2016 6/18 8/9 10/6 10/8 8/8 10/6 # 10/25
2016 6/25 8/15 10/21 # 8/13 10/18 # 10/25
2017 6/18 8/8 10/15 10/24 8/10 10/26 11/6 12/7
黑龙江大庆
Daqing, Heilongjiang
2016 4/28 8/2 10/21 10/20 8/2 11/6 # 12/4
2017 5/8 7/28 10/17 10/27 8/2 10/29 # 12/10
新疆昌吉
Changji, Xinjiang
2017 5/5 7/8 9/12 9/27 7/12 9/15 9/23 10/11
2018 5/1 7/13 9/10 9/11 7/17 10/8 10/13 10/15
新疆奇台农场 Qitai farm, Xinjiang
一分厂First farm 2016 4/18 7/12 9/24 9/20 7/17 9/21 # 10/8
二分厂Second farm 2016 4/13 7/17 9/29 # 10/2
2017 5/9 7/26 10/9 10/22 7/26 10/2 # 11/25
三分厂Third farm 2017 5/7 7/25 10/9 11/4 7/24 10/9 # 11/24
108团108 Regiment 2017 4/23 7/11 9/14 9/18 7/13 9/23 10/3 11/10

Fig. 1

Coefficient of variation (CV) as a function of Tbase when estimating thermal time duration"

Fig. 2

Thermal times of the planting-maturity, the planting-25% moisture, and the maturity-25% moisture for hybrids Xianyu 335 and Zhengdan 958 *, **, and *** indicate significantly different at the 0.05, 0.01, and 0.001 probability levels, respectively. The box represents the inter-quartile range (IQR), containing the middle 50% of samples in the Box-whisker plot (from the lower quartile to the upper quartile). The whiskers are drawn according to the Tukey method, extending to the data point that is the closest to 1.5 times the IQR below the lower quartile and above the upper quartile. The solid lines in the box denote the sample medians. • stands for outliers more than 1.5 times below or above the 1st or 3rd quartiles. + represents the sample mean."

Table 2

Factors of the thermal time from planting to 25% moisture content"

变量
Variable
简单相关系数
Correlation coefficient
偏相关系数
Partial correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数
Indirect path coefficient
x1 0.367* 0.264ns
x2 0.625** 0.657** 0.597 0.028
x3 0.518** 0.627** 0.484 0.035

Table 3

Thermal time durations for the silking-maturity, the maturity-25% moisture, and the planting-25% moisture at each experimental sites (°C d)"

品种
Hybrids
地点
Sites
吐丝至生理成熟
Silking-Maturity
生理成熟至25%含水率
Maturity-25% moisture
播种至25%含水率
Planting-25% moisture
先玉335
Xianyu 335
北京Beijing 1538 92 3110
新乡Xinxiang 1507 45 3043
大庆Daqing 1336 20 3188
昌吉Changji 1508 152 3267
奇台108团108 regiment, Qitai 1555 63 3285
奇台一分厂First farm, Qitai 1634 0 3124
奇台二分厂Second farm, Qitai 1283 90 3032
奇台三分厂Third farm, Qitai 1221 168 2920
极差Range 413 168 365
品种
Hybrids
地点
Sites
吐丝至生理成熟
Silking-Maturity
生理成熟至25%含水率
Maturity-25% moisture
播种至25%含水率
Planting-25% moisture
郑单958
Zhengdan 958
北京Beijing 1561 191 3273
新乡Xinxiang 1533 173 3264
大庆Daqing 1311 # #
昌吉Changji 1642 120 3479
奇台108团108 regiment, Qitai 1654 102 3475
奇台一分厂First farm, Qitai 1449 # #
奇台二分厂Second farm, Qitai 1388 # #
奇台三分厂Third farm, Qitai 1244 # #
极差Range 410

Table 4

Thermal time durations for the silking-maturity, the maturity-25% moisture, and the planting-25% moisture among years"

品种
Hybrids
地点
Sites
播期
Planting dates
吐丝至生理成熟
Silking-maturity
(°C d)
生理成熟至25%含水率
Maturity-25% moisture
(°C d)
播种至25%含水率
Planting-25% moisture
(°C d)
先玉335
Xianyu 335
北京
Beijing
2014/6/1 1455 38 2976
2018/6/7 1625 0 3127
新疆昌吉
Changji, Xinjiang
2017/5/5 1570 287 3392
2018/5/1 1445 18 3142
河南新乡
Xinxiang, Henan
2015/6/11 1535 17 3049
2016/6/11 1488 0 2946
郑单958
Zhengdan 958
北京
Beijing
2014/6/1 1374 238 3234
2018/6/7 1688 87 3255
新疆昌吉
Changji, Xinjiang
2017/5/5 1524 173 3346
2018/5/1 1761 66 3613
河南新乡
Xinxiang, Henan
2015/6/11 1561 181 3213
2016/6/11 1527 338 3357

Fig. 3

Thermal times from planting to 25% moisture as a function of planting dates"

[1] 李少昆. 美国玉米生产技术特点与启示. 玉米科学, 2013, 21(3):1-5.
Li S K. Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013, 21(3):1-5 (in Chinese with English abstract).
[2] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆. 黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014, (2): 76‒79.
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K. Research on corn mechanically harvesting grain quality in Huang-Huai-Hai Plain. Crops, 2014, (2):76-79 (in Chinese with English abstract).
[3] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50: 2027-2035.
Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017, 50: 2027-2035 (in Chinese with English abstract).
[4] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50: 2018-2026.
Wang K R, Li S K. Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017, 50: 2018-2026 (in Chinese with English abstract).
[5] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50: 2044-2051.
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K. Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017, 50: 2044-2051 (in Chinese with English abstract).
[6] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind Crops Prod, 2007, 25: 239-247.
doi: 10.1016/j.indcrop.2006.12.003
[7] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009, 35: 1708-1714.
Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin, 2009, 35: 1708-1714 (in Chinese with English abstract).
[8] 刘月娥, 谢瑞芝, 张厚宝, 李少昆, 高世菊. 不同生态区玉米适时晚收增产效果. 中国农业科学, 2010, 43: 2820-2828.
Liu Y E, Xie R Z, Zhang H B, Li S K, Gao S J. Study on increasing rate of maize yield after putting off harvest time in different ecoregions. Sci Agric Sin, 2010, 43: 2820-2828 (in Chinese with English abstract).
[9] 徐彩龙. 华北地区冬小麦-夏玉米双晚模式的优化及其水肥高效调控. 中国农业大学博士学位论文, 北京, 2017.
Xu C L. Optimal Double-delay in Winter Wheat-summer Maize Double Cropping System in North China Plain and its Efficient Regulation of Water and Fertilizer. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).
[10] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44: 137-143.
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018, 44: 137-143 (in Chinese with English abstract).
[11] Jennings M V. Genotypic Variability in Grain Quality of Corn Zea mays L. PhD Dissertation of Iowa State University, Iowa, USA, 1974.
[12] Cloninger F D, Horrocks R D, Zuber M S. Effects of harvest date, plant density, and hybrid on corn grain quality. Agron J, 1975, 67: 693-695.
doi: 10.2134/agronj1975.00021962006700050028x
[13] Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994, 74: 543-544.
doi: 10.4141/cjps94-097
[14] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50: 2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017, 50: 2036-2043 (in Chinese with English abstract).
[15] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018, 44: 1747-1754.
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018, 44: 1747-1754 (in Chinese with English abstract).
[16] Cross H Z, Zuber M S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron J, 1972, 64: 351-355.
doi: 10.2134/agronj1972.00021962006400030029x
[17] Russelle M P, Wilhelm W W, Olson R A, Power J F. Growth analysis based on degree days. Crop Sci, 1984, 24: 28-32.
doi: 10.2135/cropsci1984.0011183X002400010007x
[18] Mcmaster G S, Wilhelm W W. Growing degree-days: one equation, two interpretations. Agric For Meteorol, 1997, 87: 291-300.
doi: 10.1016/S0168-1923(97)00027-0
[19] Stewart D W, Dwyer L M, Carrigan L L. Phenological temperature response of maize. Agron J, 1998, 90: 73-79.
doi: 10.2134/agronj1998.00021962009000010014x
[20] Tsimba R, Edmeades G O, Millner J P, Kemp P D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res, 2013, 150: 145-155.
doi: 10.1016/j.fcr.2013.05.021
[21] Hallauer A R, Russell W A. Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn. Agron J, 1961, 53: 225-229.
doi: 10.2134/agronj1961.00021962005300040006x
[22] Schmidt J L, Hallauer A R. Estimating harvest date of corn in the field. Crop Sci, 1966, 6: 227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[23] 李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍. 玉米子粒机械收获破碎率研究. 作物杂志, 2017, (2):76-80.
Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W. Grain breakage rate of maize by mechanical harvesting in china. Crops, 2017, (2):76-80 (in Chinese with English abstract).
[24] Daynard T B. Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn. Agron J, 1972, 64: 716-719.
doi: 10.2134/agronj1972.00021962006400060003x
[25] Baker D G. Effect of observation time on mean temperature estimation. J Appl Meteorol, 1975, 14: 471-476.
doi: 10.1175/1520-0450(1975)014<0471:EOOTOM>2.0.CO;2
[26] Muchow R C. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res, 1990, 23: 145-158.
doi: 10.1016/0378-4290(90)90109-O
[27] Bonhomme R, Derieux M, Edmeades G O. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Sci, 1994, 34: 156-164.
doi: 10.2135/cropsci1994.0011183X003400010028x
[28] Warrington I J, Kanemasu E T. Corn growth response to temperature and photoperiod I. seedling emergence, tassel initiation, and anthesis. Agron J, 1983, 75: 749-754.
doi: 10.2134/agronj1983.00021962007500050008x
[29] Hou P, Liu Y E, Xie R Z, Ming B, Ma D L, Li S K. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Res, 2014, 158: 55-64.
doi: 10.1016/j.fcr.2013.12.021
[30] Borrás L, Westgate M E, Otegui M E. Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot, 2003, 91: 857-867.
doi: 10.1093/aob/mcg090
[31] Gambín B L, Borrás L, Otegui M E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[32] Major D J, Brown D M, Bootsma A, Dupuis G, Fairey N A, Grant E A, Green D G, Hamilton R I, Langille J, Sonmor L G, Smeltzer G C, White R P. An evaluation of the corn heat unit system for the short-season growing regions across Canada. Can J Plant Sci, 1983, 63: 121-130.
doi: 10.4141/cjps83-012
[33] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆. 郑单958与先玉335籽粒脱水特征研究. 玉米科学, 2016, 24(2):57-61.
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016, 24(2):57-61 (in Chinese with English abstract).
[34] 秦营营, 董树亭. 夏玉米子粒乳线比例与含水量、粒重及营养物质积累的关系. 玉米科学, 2014, 22(2):81-86.
Qin Y Y, Dong S T. Relationship among kernel milk line formation, water content, grain weight and nutrients accumulation of summer maize. J Maize Sci, 2014, 22(2):81-86 (in Chinese with English abstract).
[35] Rench W E, Shaw R H. Black layer development in corn. Agron J, 1971, 63: 303-305.
doi: 10.2134/agronj1971.00021962006300020031x
[36] Afuakwa J J, Crookston R K. Using the kernel milk line to visually monitor grain maturity in maize. Crop Sci, 1984, 24: 687-691.
doi: 10.2135/cropsci1984.0011183X002400040015x
[37] Ma B L, Dwyer L M. Maize kernel moisture, carbon and nitrogen concentrations from silking to physiological maturity. Can J Plant Sci, 2001, 81: 225-232.
doi: 10.4141/P00-073
[38] Tollenaar M, Daynard T B. Effect of defoliation on kernel development in maize. Can J Plant Sci, 1978, 58: 207-212.
doi: 10.4141/cjps78-030
[39] Carter M W, Poneleit C G. Black layer maturity and filling period variation among inbred lines of corn (Zea mays L.). Crop Sci, 1973, 13: 436-439.
doi: 10.2135/cropsci1973.0011183X001300040014x
[40] Tremblay G J, Filion P, Tremblay M, Berard M, Durand J, Goulet J, Montpetit J M. Evolution of kernels moisture content and physiological maturity determination of corn (Zea mays L.). Can J Plant Sci, 2008, 88: 679-685.
doi: 10.4141/CJPS07058
[41] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, (2):88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017, (2):88-92 (in Chinese with English abstract).
[42] Borrás L, Westgate M E. Predicting maize kernel sink capacity early in development. Field Crops Res, 2006, 95: 223-233.
doi: 10.1016/j.fcr.2005.03.001
[43] Sala R G, Andrade F H, Westgate M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling. Crop Sci, 2007, 47: 711-716.
doi: 10.2135/cropsci2006.06.0381
[44] 薛军, 王群, 李璐璐, 张万旭, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44: 1782-1792.
Xue J, Wang Q, Li L L, Zhang W X, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Changes of maize lodging after physiological maturity and its influencing factors. Acta Agron Sin, 2018, 44: 1782-1792 (in Chinese with English abstract).
[45] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44: 1755-1763.
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai rivers summer maize. Acta Agron Sin, 2018, 44: 1755-1763 (in Chinese with English abstract).
[46] Cutforth H W, Shaykewich C F. Relationship of development rates of corn from planting to silking to air and soil temperature and to accumulated thermal units in a prairie environment. Can J Plant Sci, 1989, 69: 121-132.
doi: 10.4141/cjps89-014
[47] Mcmaster G S, Smika D E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol, 1988, 43: 1-18.
doi: 10.1016/0168-1923(88)90002-0
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!