Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2184-2198.doi: 10.3724/SP.J.1006.2021.04240
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Peng1(), LIU Che1, SONG Hao1, YAO Pan-Pan1, SU Pei-Lin1, WEI Yao-Wei1, YANG Yong-Xia1,*(), LI Qing-Chang2,*()
[1] |
Carvalho A O, Gomes V M. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007, 28: 1144-1153.
doi: 10.1016/j.peptides.2007.03.004 |
[2] |
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681.
doi: 10.1093/jxb/erv313 |
[3] |
Jose-Estanyol M, Gomis-Ruth F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42: 355-365.
doi: 10.1016/j.plaphy.2004.03.009 |
[4] | Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Biol, 1996, 47: 627-654. |
[5] |
Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86-108.
doi: 10.1186/1471-2164-9-86 pmid: 18291034 |
[6] |
Liu W, Huang D, Liu K, Hu S, Yu J, Gao G, Song S. Discovery, Identification and comparative analysis of non-specific lipid transfer protein (nsLtp) family in Solanaceae. Genom Proteom Bioinf, 2010, 8: 229-237.
doi: 10.1016/S1672-0229(10)60024-1 |
[7] |
D’Agostino N, Buonanno M, Ayoub J, Barone A, Monti S M, Rigano M M. Identification of non-specific lipid transfer protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep (UK), 2019, 9: 1607.
doi: 10.1038/s41598-018-38301-z |
[8] |
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics, 2019, 20: 375.
doi: 10.1186/s12864-019-5698-x |
[9] |
Edstam M M, Viitanen L, Salminen T A, Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. Mol Plant, 2011, 4: 947-964.
doi: 10.1093/mp/ssr019 |
[10] | Fang Z W, He Y Q, Liu Y K, Jiang W Q, Song J H, Wang S P, Ma D F, Yin J L. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J Integr Agric, 2019, 18: 2-17. |
[11] |
Wei K F, Zhong X J. Non-specific lipid transfer proteins in maize. BMC Plant Biol, 2014, 14: 281.
doi: 10.1186/s12870-014-0281-8 |
[12] |
Zhang M Y, Kim Y J, Zong J, Lin H, Dievart A, Li H J, Zhang D B, Liang W Q. Genome-wide analysis of the barley non-specific lipid transfer protein gene family. Crop J, 2019, 7: 65-76.
doi: 10.1016/j.cj.2018.07.009 |
[13] |
Chae K, Gonong B J, Kim S C, Kieslich C A, Morikis D, Balasubramanian S, Lord E M. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot, 2010, 61: 4277-4290.
doi: 10.1093/jxb/erq228 |
[14] |
Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399-403.
doi: 10.1038/nature00962 |
[15] |
Yeats T H, Rose J K. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci, 2008, 17: 191-198.
doi: 10.1110/ps.073300108 |
[16] |
Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong C H. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol Biol, 2016, 91: 471-484.
doi: 10.1007/s11103-016-0482-7 |
[17] |
Zaidi M A, O'Leary S J B, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. Plant Cell Rep, 2020, 39: 1185-1197.
doi: 10.1007/s00299-020-02556-6 |
[18] |
Deng T, Yao H, Wang J, Wang J, Xue H, Zuo K. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci Rep (UK), 2016, 6: 26829.
doi: 10.1038/srep26829 |
[19] |
Potocka I, Baldwin T C, Kurczynska E U. Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep, 2012, 31: 2031-2045.
doi: 10.1007/s00299-012-1314-0 |
[20] | Finkina E I, Melnikova D N, Bogdanov I V, Ovchinnikova T V. Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nat, 2016, 8: 47-61. |
[21] |
Gebhardt C, Vieths S, Gubesch M, Averbeck M, Simon J C, Treudler R. 10 kDa lipid transfer protein: the main allergenic structure in a German patient with anaphylaxis to blueberry. Allergy, 2009, 64: 498-499.
doi: 10.1111/j.1398-9995.2008.01923.x pmid: 19220224 |
[22] |
Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64: 1755-1767.
doi: 10.1093/jxb/ert040 |
[23] |
McLaughlin J E, Bin-Umer M A, Widiez T, Finn D, McCormick S, Tumer N E. A lipid transfer protein increases the glutathione content and enhances Arabidopsis resistance to a trichothecene mycotoxin. PLoS One, 2015, 10: e0130204.
doi: 10.1371/journal.pone.0130204 |
[24] |
Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed, 2006, 17: 159-171.
doi: 10.1007/s11032-005-4736-3 |
[25] |
Wang X, Li Q, Cheng C, Zhang K, Lou Q, Li J, Chen J. Genome-wide analysis of a putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome, 2020, 63: 225-238.
doi: 10.1139/gen-2019-0157 |
[26] |
Zhu X, Li Z, Xu H, Zhou M, Du L, Zhang Z. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genom, 2012, 12: 481-488.
doi: 10.1007/s10142-012-0286-z |
[27] | Gaier S, Marsh J, Oberhuber C, Rigby N M, Shewry P R. Purification and structural stability of the peach allergens Pru p 1 and Pru p 3. Mol Nutr Food Res, 2008, 52: S220-229. |
[28] |
Palacin A, Varela J, Quirce S, Pozo V D, Tordesillas L, Barranco P, Fernandez-Nieto M, Sastre J, Diaz-Perales A, Salcedo G. Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker's asthma. Clin Exp Allergy, 2009, 39: 1267-1276.
doi: 10.1111/j.1365-2222.2009.03280.x pmid: 19486028 |
[29] |
Choi Y E, Lim S, Kim H J, Han J Y, Lee M H, Yang Y, Kim J A, Kim Y S. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J, 2012, 70: 480-491.
doi: 10.1111/tpj.2012.70.issue-3 |
[30] | 徐扬. 非特异性脂转移蛋白NtLTP4作为正调控因子参与烟草对非生物和生物胁迫的响应. 山东农业大学博士学位论文, 山东泰安, 2018. |
Xu Y. Non-specific Lipid Transfer Protein NtLTP4 as a Positive Regulator Involved in Abiotic and Biotic Stress in Nicotiana tabacum. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract). | |
[31] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[32] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325 |
[33] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 |
[34] |
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 282.
doi: 10.1186/1471-2229-10-282 |
[35] |
Yang Z, Bielawski J P. Statistical methods for detecting molecular. Trends Ecol Evol, 2000, 15: 496-203.
pmid: 11114436 |
[36] |
Douliez J P, Michon T, Elmorjani K, Marion D. Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci, 2000, 32: 1-20.
doi: 10.1006/jcrs.2000.0315 |
[37] |
Deng W, Li R, Xu Y, Mao R, Chen S, Chen L, Chen L, Liu Y G, Chen Y. A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod-and thermo-sensitive dwarfism in rice. J Exp Bot, 2020, 71: 1294-1305.
doi: 10.1093/jxb/erz500 |
[38] |
Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep(UK)), 2016, 6: 38948.
doi: 10.1038/srep38948 |
[39] |
Lynch M. Intron evolution as a population-genetic process. Proc Natl Acad Sci USA, 2002, 99: 6118-6123.
doi: 10.1073/pnas.092595699 |
[40] |
Mattick J S, Gagen M J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18: 1611-1630.
pmid: 11504843 |
[41] |
Li J, Gao G, Xu K, Chen B, Yan G, Li F, Qiao J, Zhang T, Wu X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One, 2014, 9: e84556.
doi: 10.1371/journal.pone.0084556 |
[42] |
Moore R C, Purugganan M D. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol, 2005, 8: 122-128.
doi: 10.1016/j.pbi.2004.12.001 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[4] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[5] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[6] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[7] | DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366. |
[8] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[9] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[10] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
[11] | HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893. |
[12] | QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786. |
[13] | HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289. |
[14] | HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207. |
[15] | LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265. |
|