Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2173-2183.doi: 10.3724/SP.J.1006.2021.02076


Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice

LI Jing-Lin(), LI Jia-Lin, LI Xin-Peng, AN Bao-Guang, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jing, LONG Tuan*()   

  1. Hainan Bolian Rice Gene Technology Co., Ltd., Haikou 570203, Hainan, China
  • Received:2020-11-15 Accepted:2021-03-19 Online:2021-11-12 Published:2021-04-06
  • Contact: LONG Tuan E-mail:250864463@qq.com;longtuan2001@aliyun.com
  • Supported by:
    Open Project of State Key Laboratory of Rice Biology Foundation of China Rice Research Institute(20190203)


Cytoplasmic male sterile (CMS) lines and photoperiod/thermo-sensitive genic male sterile (PTGMS) lines are widely used as female parents in the commercial production of rice hybrid seeds. however, both systems have their intrinsic defects such as low usage of germplasm resources and unstable sterility. Recessive genic male sterile (GMS) lines, which overcome the problems of CMS and PTGMS lines, have played a key role in the development of next generation technologies for rice hybrid seed production. In this study, a GMS mutant ptc1-2 without pollen grains was identified from an irradiation-induced mutant library of 9311. Using a map-based cloning approach, a 257.37 kb deletion region was detected, which contained entire coding region of PTC1 on chromosome 9. PCR co-segregation analysis showed that the male sterility was completely associated with the ptc1-2 deletion region. The ptc1-2 deletion locus was then introgressed into a PTGMS line C815S and a CMS maintainer line Wufeng B by marker-assisted backcrossing. Corresponding GMS lines C815G and Wufeng G were obtained at BC3F3 generation, which showed the phenotypical similarity to the C815S and Wufeng B lines, respectively. Combining ability tests revealed that C815G and Wufeng G had the same combining ability as C815S and the CMS line Wufeng A in conventional field, respectively. These results indicated that ptc1-2 was a new allele of PTC1, which could be applied for breeding GMS lines and be the potential of GMS lines in rice hybrid seed production.

Key words: rice, male sterile, ptc1, map-based cloning, backcrossing, combining ability test

Fig. 1

Phenotypes of the ptc1-2 mutant and wild type plants A: plants of 9311 and ptc1-2 mutant at filling stage; B: panicles of 9311 and ptc1-2 mutant at ripening stage; C: floral organs of 9311 and ptc1-2 mutant; D: pollen grains of 9311; E: pollen grains of ptc1-2 mutant. Scale bars: 15 cm (A); 3 cm (B); 2 mm (C); 150 μm (D)."

Table 1

Partial list of the primers used in this study"

Marker/gene name
Forward primer (5'-3')
Reverse primer (5'-3')
Length of amplified products (bp)
Marker/gene name
Forward primer (5'-3')
Reverse primer (5'-3')
Length of amplified products (bp)
14 1664SP1 GCACACTGCACGGCGACGTTTAGG 侧翼序列分离 Isolating flanking sequences
15 1664SP2 ACGATGGACTCCAGTCTGGCTGCCGTGGGAATTAGAGCAT 侧翼序列分离 Isolating flanking sequences
16 1664SP3 CCCTCCAGGAGATTGTCTAAAATTGACTTT 侧翼序列分离 Isolating flanking sequences
17 1664F1 CATCTCGCAGTTTACATGCAG ptc1-2标记 ptc1-2 markers
18 1664R1 AGTCTACTCGAGCTACTACCG ptc1-2标记 ptc1-2 markers
19 1664R2 CCATCTGAAACTAGTACTCCCA ptc1-2标记 ptc1-2 markers
tms5 markers

Table 2

Genetic analysis of the ptc1-2 mutant"

Seed-setting rate of F1
F2 χ2(1:3) χ20.05
No. of wild-type plants
No. of mutant plants
ptc1-2/9311 89.2 312 92 0.953 3.841
ptc1-2/明恢63 ptc1-2/Minghui 63 88.1 351 107 0.570 3.841

Fig. 2

Map-based cloning of ptc1-2 A: the ptc1-2 locus was first mapped to an interval between RM7039 and RM257 on the long arm of chromosome 9; B: ptc1-2 was fine mapped to an interval of 573 base pairs between D1380 and D3676; C: the ptc1-2 locus consisted of a 259,370 base-pair deletion from position 15,324,556 base-pair to position 15,583,926 base-pair. The deletion fragment contained the entire coding region of PTC1."

Fig. 3

Isolation of sequences flanking the ptc1-2 locus and co-segregation analysis A: the second round of TAIL-PCR results for isolation of genomic sequences flanking the ptc1-2 locus; B: co-segregation analysis of the ptc1-2 locus with the male sterile phenotype. All PCR products of F2 sterile plants were 546 bp in length. The size of PCR products of F2 fertile plants was either 811 bp, or 546 bp, and 811 bp. M: DNA 2000 bp marker."

Table 3

Agronomic traits of C815S, C815G, Wufeng A, and Wufeng G"

C815S C815G 五丰A
Wufeng A
Wufeng G
抽穗期Heading date (d) 82.60±0.47 81.60±0.47 72.00±0.81 71.60±0.47
株高Plant height (cm) 67.50±1.75 70.60±3.13 68.60±1.02 72.30±2.59
总分蘖数Total tiller number 8.00±0.81 8.30±0.47 8.00±0.81 8.30±0.47
穗长Panicle length (cm) 23.43±0.16 22.96±0.09 23.26±0.12 23.83±0.20
穗粒数No.of spikelets per panicle 169.30±4.10 167.60±3.39 174.00±4.08 180.00±2.44
粒长Grain length (mm) 8.64±0.13 8.84±0.08 8.88±0.04 8.84±0.10
粒宽Grain width (mm) 2.76±0.10 2.60±0.06 2.78±0.10 2.82±0.07

Fig. 4

Phenotypes of C815G and Wufeng G A: phenotypes of C815S and C815G plants at heading stage; B: spikelets of C815S and C815G; C: floral organs of C815S and C815G; D: pollen grains of C815S; E: pollen grains of C815G; F: phenotypes of Wufeng A and Wufeng G plants at heading stage; G: spikelets of Wufeng A and Wufeng G; H: floral organs of Wufeng A and Wufeng G; I: pollen grains of Wufeng A; J: pollen grains of Wufeng G. Scale bars: 10 cm (A, F); 0.5 cm (B, C, G, H); 200 μm (D, E, I, J)."

Table 4

Phenotypes of hybrids using C815G or Wufeng G as maternal parents"

C815S/+ C815G/+ 五丰A/+
Wufeng A/+
Wufeng G/+
抽穗期Heading date (d) 84.60±4.84 84.30±4.98 81.45±5.84 82.13±5.78
株高Plant height (cm) 103.80±5.43 103.50±5.47 113.29±4.88 108.92±5.47*
总分蘖数Total tiller number 12.69±1.55 12.96±1.03 11.13±1.22 11.42±1.21
穗长Panicle length (cm) 23.15±0.62 23.23±0.89 23.18±1.12 23.29±0.97
穗粒数No.of spikelets per panicle 186.61±16.36 186.45±15.42 201.75±24.63 196.96±18.33
结实率Seed-setting rate (%) 83.90±4.70 83.92±3.72 87.83±5.21 88.38±4.79
粒长Grain length (mm) 8.94±0.36 8.94±0.40 8.88±0.25 8.90±0.27
粒宽Grain width (mm) 2.56±0.20 2.56±0.19 2.58±0.13 2.59±0.15
千粒重1000-grain weight (g) 24.43±1.91 24.35±1.99 24.92±2.04 24.97±2.00
单株产量Grain yield per plant (g) 52.44±9.03 53.93±9.27 54.05±9.24 51.75±5.04

Table 5

Variance analysis of combining ability of C815S and C815G in fields"

组合Combination 父本
Male parent
Female parent
Male × female
自由度DF 3 29 14 1 14 87
抽穗期Heading date 16.03** 99.92** 126.39 2.7 80.4** 1.4
株高Plant height 128.76** 122.89** 208.11** 2.7** 46.25 26.8
总分蘖数Total tiller number 5.34 7.23** 10.2* 2.13 4.64* 2.47
穗长Panicle length 1.14 2.43** 2.58 0.18 2.43** 0.56
穗粒数No. of spikelets perpanicle 462.34* 1046.13** 1018.12 0.71 1148.8** 142.64
结实率Seed-setting rate 0.005* 0.004** 0.003 0.001 0.004** 0.001
粒长Grain length 0.03 0.59** 0.54 0.0007 0.69** 0.03
粒宽Grain width 0.02 0.16** 0.15 0.0001 0.18** 0.01
千粒重1000-grain weight 0.24 15.82** 21.19* 0.23 11.56** 0.3
单株产量Grain yield per plant 1279.36** 348.89** 486.62* 66.11 231.37** 37.54

Table 6

Variance analysis of combining ability of Wufeng A and Wufeng G in fields"

组合Combination 父本
Male parent
Female parent
Male × female
自由度DF 3 29 14 1 14 87
抽穗期Heading date 39.56** 140.12** 170.42 14.01 118.83** 3.24
株高Plant height 395.38** 130.89** 178.40** 571.60** 51.89** 50.23
总分蘖数Total tiller number 9.95** 6.23** 6.85 2.64 5.86** 2.11
穗长Panicle length 5.07** 4.55** 4.83 0.37 4.57** 0.78
穗粒数No. of spikelets per panicle 702.16** 1973.93** 2169.24 686.89 1870.55** 136.50
结实率Seed-setting rate 0.003** 0.01** 0.01 0.001 0.01** 0.001
粒长Grain length 0.59** 0.29** 0.29 0.01 0.30** 0.07
粒宽Grain width 0.10** 0.08** 0.05 0.01 0.13 0.02
千粒重1000-grain weight 1.14 16.88** 21.29 0.08 13.68** 0.57
单株产量Grain yield per plant 500.55** 234.86** 256.85 158.86 218.30** 70.25

Table 7

Relative effect values of general combining ability in fields"

C815S C815G 五丰A
Wufeng A
Wufeng G
抽穗期Heading date 0.1776 -0.1776 -0.4177 0.4177
株高Plant height 0.1447 -0.1447 1.9643 -1.9643
总分蘖数Total tiller number -1.0399 1.0399 -0.2967 0.2967
穗长Panicle length -0.1653 0.1653 -0.2403 0.2403
穗粒数No. of spikelets per panicle 0.0411 -0.0411 1.2001 -1.2001
结实率Seed-setting rate 0.0795 -0.0795 -0.3093 0.3093
粒长Grain length -0.0280 0.0280 -0.0984 0.0984
粒宽Grain width 0.0391 -0.0391 -0.2902 0.2902
千粒重1000-grain weight 0.1784 -0.1784 -0.1012 0.1012
单株产量Grain yield per plant -1.4929 1.4929 2.1750 -2.1750
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59: 1-6.
doi: 10.1007/s11103-005-2159-5
[2] 余四斌, 熊银, 肖景华, 罗利军, 张启发. 杂交稻与绿色超级稻. 科学通报, 2016, 61: 3797-3803.
Yu S B, Xiong Y, Xiao J H, Luo L J, Zhang Q F. Hybrid rice and green super rice. Chin Sci Bull, 2016, 61: 3797-3803 (in Chinese).
[3] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[4] Normile D. Agricultural research: reinventing rice to feed the world. Science, 2008, 321: 330-333.
doi: 10.1126/science.321.5887.330 pmid: 18635770
[5] Wang H, Deng X W. Development of the “Third-Generation” hybrid rice in China. Genom Proteom Bioinf, 2018, 16: 393-396.
doi: 10.1016/j.gpb.2018.12.001
[6] Tang H, Luo D, Zhou D, Zhang Q, Tian D, Zheng X, Chen L, Liu Y G. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant, 2014, 7: 1497-1500.
doi: 10.1093/mp/ssu047
[7] Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y G. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet, 2013, 45: 573-577.
doi: 10.1038/ng.2570
[8] 任光俊, 颜龙安, 谢华安. 三系杂交水稻育种研究的回顾与展望. 科学通报, 2016, 61: 3748-3760.
Ren G J, Yan L A, Xie H A. Retrospective and perspective on indica three-line hybrid rice breeding research in China. Chin Sci Bull, 2016, 61: 3748-3760 (in Chinese).
[9] 袁隆平. 水稻的雄性不孕性. 科学通报, 1966, 17(4):185-188.
Yuan L P. Hybrid rice and green super rice. Chin Sci Bull, 1966, 17(4):185-188 (in Chinese).
[10] Fan Y, Zhang Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod, 2017, 31: 1-12.
doi: 10.1007/s00497-018-0330-9
[11] Hu Z, Tian Y, Xu Q. Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice, 2016, 31: 1-8.
[12] 袁隆平. 两系法杂交水稻研究的进展. 中国农业科学, 1990, 23(3):1-6.
Yuan L P. Progress of two-line system hybrid rice breeding. Sci Agric Sin, 1990, 23(3):1-6 (in Chinese with English abstract).
[13] 袁隆平. 第三代杂交水稻初步研究成功. 科学通报, 2016, 61: 3404-3404.
Yuan L P. Third-generation hybrid rice preliminary research success. Chin Sci Bull, 2016, 61: 3404-3404 (in Chinese).
[14] Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: 10.1016/j.molp.2019.01.014
[15] Wu Y, Fox T W, Trimnell M R, Wang L, Xu R, Cigan A M, Huffman G A, Garnaat C W, Hershey H, Albertsen M C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2015, 14: 1-9.
doi: 10.1111/pbi.12517
[16] Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W, Zhou J, Tang X, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA, 2016, 113: 14145-14150.
doi: 10.1073/pnas.1613792113
[17] 马西青, 方才臣, 邓联武, 万向元. 水稻隐性核雄性不育基因研究进展及育种应用探讨. 中国水稻科学, 2012, 26: 511-520.
Ma X Q, Fang C C, Deng L W, Wan X Y. Research progress and breeding application of recessive genic male sterility genes in rice. Chin J Rice Sci, 2012, 26: 511-520 (in Chinese with English abstract).
[18] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I H, Kim M J, Kim Y K, Nahm B H, An G. Rice Undeveloped Tapetum 1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
pmid: 16141453
[19] Yang Z, Sun L, Zhang P, Zhang Y, Yu P, Liu L, Abbas A, Xiang X, Wu W, Zhan X, Cao L, Cheng S. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. Plant J, 2019, 99: 844-861.
doi: 10.1111/tpj.v99.5
[20] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107
[21] Han Y Y, Zhou H Y, Xu L, Liu X Y, Fan S X, Cao J S. The zinc-finger transcription factor BcMF20 and its orthologs in Cruciferae which are required for pollen development. Biochem Bioph Res Commun, 2018, 503: 998-1003.
doi: 10.1016/j.bbrc.2018.06.108
[22] Niu N, Liang W, Yang X, Jin W, Wilson Z A, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun, 2013, 4: 1-11.
[23] Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL 1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760
[24] Yang Z, Liu L, Sun L, Yu P, Zhang P, Abbas A, Xiang X, Wu W, Zhang Y, Cao L, Cheng S. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol, 2019, 99: 175-191.
doi: 10.1007/s11103-018-0811-0
[25] Springer N M, Stupar R M. Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res, 2007, 17: 264-275.
pmid: 17255553
[26] Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537: 629-633.
doi: 10.1038/nature19760
[27] 龙湍, 安保光, 李新鹏, 张维, 李京琳, 杨瑶华, 曾翔, 吴永忠, 黄培劲. 籼稻9311辐射诱变突变体库的创建及其筛选. 中国水稻科学, 2016, 30: 44-52.
Long T, An B G, Li X P, Zhang W, Li J L, Yang Y H, Zeng X, Wu Y Z, Huang P J. Construction and screening of an irradiation- induced mutant library of indica rice 93-11. Chin J Rice Sci, 2016, 30: 44-52 (in Chinese with English abstract).
[28] Michelmore R. Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol, 1995, 33: 393-427.
pmid: 18999967
[29] Liu Y G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques, 2007, 43: 649-656.
doi: 10.2144/000112601
[30] 张华丽, 陈晓阳, 黄建中, 鄂志国, 龚俊义, 舒庆尧. 中国两系杂交水稻光温敏核不育基因的鉴定与演化分析. 中国农业科学, 2015, 48: 1-9.
Zhang H L, Chen X Y, Huang J Z, E Z G, Gong J Y, Shu Q Y. Identification and transition analysis of photo-/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci Agric Sin, 2015, 48: 1-9 (in Chinese with English abstract).
[31] Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci, 1956, 9: 463-493.
doi: 10.1071/BI9560463
[32] 黄远樟, 刘来福. 作物数量遗传学基础六、配合力: 不完全双列杂交. 遗传, 1980, 2(2):45-48.
Huang Y Z, Liu L F. The basis of quantitative genetics in crops Ⅵ. Combining ability: incomplete diallel cross. Heredias, 1980, 2(2):45-48 (in Chinese).
[33] Tang Q Y, Zhang C X.. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013, 20: 254-260.
doi: 10.1111/j.1744-7917.2012.01519.x
[34] Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detra J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703):43-49.
doi: 10.1038/s41586-018-0063-9
[35] Comstock R E, Robinson H F, Harvey P H. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J, 1949, 41: 360-367.
doi: 10.2134/agronj1949.00021962004100080006x
[36] Matzinger D F. Comparison of three types of testers for the evaluation of inbred lines of corn. Agron J, 1953, 45: 493-495.
doi: 10.2134/agronj1953.00021962004500100010x
[37] 邓兴旺, 王海洋, 唐晓艳, 周君莉, 陈浩东, 何光明, 陈良碧, 许智宏. 杂交水稻育种将迎来新时代. 中国科学: 生命科学, 2013, 43: 864-868.
Deng X W, Wang H Y, Tang X Y, Zhou J L, Chen H D, He G H, Chen L B, Xu Z H. Hybrid rice breeding welcomes a new era of molecular crop design. Sci Sin (Vitae), 2013, 43: 864-868 (in Chinese with English abstract).
[38] 鲍海滢, 刘秉华, 王山荭, 杨丽, 夏兰芹. 矮败小麦近等基因系的分子检测. 作物学报, 2001, 27: 541-543.
Bao H Y, Liu B H, Wang S H, Yang L, Xia L Q. Molecular assessment of NILs of dwarfing sterile wheat. Acta Agron Sin, 2001, 27: 541-544 (in Chinese with English abstract).
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Full text



No Suggested Reading articles found!